Sight Search

Sinus Barotrauma

Sinus barotraumas are among the most common diving injuries. When the paranasal sinuses fail to equalise to barometric changes during vertical travel, damage to the sinus can cause sharp facial pain with postnasal drip or a nosebleed after surfacing. Although sinus barotrauma is a prevalent and generally benign diving injury, some of its complications could pose a significant risk to the diver’s health. Divers should never underestimate difficulties equalising sinuses.

Anatomy and Functions of the Paranasal Sinuses

The paranasal sinuses are gas-filled cavities in your facial bones and skull. They have several functions: They lighten the weight of your head, play a significant role in the resonance of your voice, serve as collapsible structures that protect vital organs during facial trauma, and may help the turbinates (small structures inside the nose) humidify and heat the air we breathe. There are two sets of four sinus cavities, one set on the right and one on the left.

  • The frontal sinuses (area one) are located within the forehead above your nose and eyes and are surrounded by thick, bony walls.
  • The ethmoid cells (area two) are located within the ethmoid bone between your eyes and nose and are formed by a variable number of connected individual cells.
  • The sphenoidal sinuses (area three) are centrally located behind the nasal cavity and vary in size and shape.
  • The maxillary sinuses (area four) are located within the maxillary bone below your eyes and lateral to your nose and are the largest pair of paranasal sinuses.
Paranasal sinuses. (Illustration by Michał Komorniczak)
The paranasal sinuses communicate with the nasal cavity via small orifices called ostia (singular: ostium). The ostia can easily be blocked by inflammatory processes, like colds or allergies, and in divers by improper attempts at equalization. Ostia blockage can impair drainage and make both descents and ascents troublesome.

Mechanisms of Injury

Every foot of descent in water adds approximately one-half pound of pressure on each square inch of tissue. The pressure diminishes by the same amount on ascent. According to Boyle’s Law, as the ambient pressure increases while descending, the volume of the gas in an enclosed space decreases proportionately. As the ambient pressure decreases while ascending, the volume of the gas increases proportionately.

While descending, it is imperative that divers actively or passively equalise all enclosed air-filled spaces to avoid injury. While ascending, the increasing volume usually vents itself passively.

The mechanisms of injury of sinus barotraumas depend on whether it happened during descent or ascent.

During Descent (Squeeze)

Failure to equalise pressures on paranasal sinuses while descending keeps these cavities at atmospheric pressure, which results in a relative negative pressure (vacuum) as you descend to depth. The first sign of this type of sinus barotrauma is generally a sharp pain. The capillary vessels of the mucous membranes lining the sinuses engorge and burst, likely filling the sinuses with blood until the negative pressure is equalised. At this point the pain usually resolves or diminishes, and the diver continues the dive. While ascending, any remaining gas within the sinus expands and forces out this blood and mucus. These barotraumas usually manifest as postnasal drip or bloody discharge from the nose, depending on the sinuses involved. The bleeding can increase if you are taking blood thinners that include aspirin or other nonsteroidal anti-inflammatory drugs (NSAIDs).

During Ascent (Reverse Block)

Sinus barotrauma can also happen during ascent, known as a reverse block. Equalisation of ears and sinuses during ascent is usually a passive event, which means active attempts should not be necessary. However, mild swelling and inflammation of the mucous membranes (as caused by a cold or by seasonal allergies) can compromise the narrow passages through which air escapes, trapping gas, mucus and blood. If a sinus fails to vent during ascent, the increasing pressure can apply significant tension to the mucosal lining and bony walls of the sinus. As the diver continues to ascend, one of the sinus walls can burst into an adjacent sinus that did vent correctly (the point of least resistance), effectively relieving the excess pressure. This type of sinus barotrauma manifests as a sharp facial pain during ascent, followed by a nosebleed or postnasal drip depending upon the sinus cavities involved.

Manifestations

The most common manifestations of sinus barotrauma are sharp facial pain during descent or ascent and blood dripping from the nose after surfacing. It is not uncommon for sinus barotrauma to be painless and manifest only as bloody mucus in the mask or the back of the throat.

Signs and Symptoms

Pain


  • Pain is usually facial in the region corresponding to the compromised sinus. In most cases the pain has a direct relation with changes in pressure on descent or ascent. In some cases the pain is delayed for a few hours; for example, when a sinus remains slightly over-pressurized following a dive.
  • Sharp pain in your forehead above and between the eyebrows is often a sign of barotrauma to your frontal sinuses. It is often described as an “ice-cream headache.” This type of sinus barotrauma usually has a direct relationship with changes in depth.
  • Pain behind your eyes is usually the result of a compromise to the ethmoidal sinus. You may also experience sharp pain, associated with changes in depth, behind and above the eyes.
  • Sharp pain beside your nose and below your eyes (upper maxillary region) is often a sign of maxillary sinus barotrauma. With changes in depth the pain might radiate to the upper molars or gums on the same side as the facial pain. The maxillary sinus and the upper jaw are supplied by the same nerve (trigeminal nerve).
  • Pain in the back (occipital region) or top of the head is the most intriguing, as its connection with the deeper sphenoidal cells is not obvious. When compared to the other sinuses, pain in the occipital region is often duller, like a normal headache. The association with changes in depth should be a clue that leads to a sinus origin.

Bleeding

  • You may notice some blood mixed with mucus and saliva in your mask after surfacing. You might not have been aware of it while diving. Minor bleeding that drips from the nose (technically not a nosebleed) or from the nose to the throat is typical of sinus barotrauma.
  • Minor bleeding is seldom a severe problem, but if you take an anticoagulant medication, be cautious when diving in a remote location. Uncontrolled bleeding without timely access to a medical facility prepared for such emergencies could be a severe health threat.

Coughing or Spitting Up Blood

While a nosebleed is not usually a manifestation of a life-threatening condition, postnasal drip usually results in blood in the diver’s mouth. This might be disconcerting to divers as it could be interpreted as the diver coughing up or spitting up blood. While there may be clues to determine whether this bloody discharge is of pulmonary origin or the result of sinus barotrauma, it is beyond the scope of what someone without medical training should attempt to evaluate. When in doubt, seek medical evaluation immediately.

Prevention

  • Do not dive when congested.
  • Refrain from diving when feeling fullness, pressure or pain in your paranasal sinuses.
  • Learn and use proper equalisation techniques.

Medications

Talk to your doctor if you feel you need medication to dive. An ENT doctor is ideal for both ear and sinus problems, but your primary care physician can help with common problems. Using nasal sprays containing antihistamines and decongestants before diving may reduce swelling in the nasal and ear passages. Some are prescription only, while some are over the counter (OTC). With either option, your doctor may have special instructions on how to use them while diving.

Antihistamines prevent the effects of histamine, a substance produced and released by your body during the inflammations that cause nasal congestion, swelling of the mucous lining, and sneezing. While some of these drugs may cause drowsiness, second-generation antihistamines like cetirizine, loratadine and fexofenadine do not.

Decongestants relieve symptoms caused by the already-released histamine, clearing nasal and sinus congestion. Decongestants are not suitable for use by everyone. Some cardiovascular and central nervous system side effects could be concerns while diving.

Most nasal sprays work best if used one to two hours before the descent. They last from eight to 12 hours, so there is no need to take a second dose before a repetitive dive. Take short-acting nasal sprays like oxymetazoline 30 minutes before the descent; these usually last for 12 hours. Repeated use of short-acting OTC sprays can result in a rebound reaction that may set the stage for a reverse block. Steroid nasal sprays do not have this rebound effect but are slow-acting drugs, so you need to start them about a week in advance and use them regularly.
Whether you have a prescription or not, always check with your doctor before attempting to treat any condition.

Risk Factors

If you have a history of sinus trouble, allergies, a broken nose or deviated septum, or you currently have a cold, you may find the clearing procedure challenging to accomplish and may experience a problem with nosebleeds. It’s always best not to dive with a cold or any condition that may block the sinus air passages. If you experience difficulties during descent, this is the time to abort the dive. Remember that you can only abort a descent, never an ascent.

A good way to assess whether your paranasal sinuses are clear is by paying attention to your voice. You will sound like you have a stuffy nose due to a lack of appropriate nasal airflow while speaking.

Being able to breathe through your nose only proves your nasal passages are clear. It does not indicate anything about your paranasal sinuses.

Complications

With this type of injury, blood can run down the back of the throat or pool in the sinuses below the eyes and emerge later (even days after diving) as a thick, black, bloody discharge. The collected blood can also act as a growth medium for bacteria and result in sinus infections.

Pneumocephalus (air between the skull and the brain) and orbital emphysema (air behind and around the eyeball) are rare but important complications of sinus barotraumas. If not adequately treated, they may cause serious neurological and life-threatening complications. Never underestimate sinus barotrauma.
 
First Aid

  • Use a nasal decongestant spray or drops. This might reduce the swelling of the mucous membranes, which may help to open the ostia and drain fluid from the sinuses.
  • Seek professional medical evaluation. Any doctor should be able to help, regardless of any dive medicine knowledge or training.

Implications in Diving

For the Diver


  • You can consider a return to diving if a physician determines that the injury has healed, and the risk of further injury is no greater than normal.
  • Do not neglect these injuries. Some of the complications could negatively affect you for the rest of your life.

For the Dive Operator

  • Provide first aid treatment, as described above. As the expedition’s leader, you have a duty of care for a diver injured during your trip.
  • Be skeptical of any folkloric first aid treatments. Use common sense, and don’t attempt any magic solutions. Remember that you might be liable.
  • Have them evaluated by a medical professional in a timely fashion.
  • Don’t worry about referring them to a doctor with dive medicine experience. An ENT specialist is ideal, but any doctor should be able to help.
  • Do not allow any further diving once the injury has occurred until they are cleared by a physician.

For the Physician

  • Provide symptomatic treatment (anti-inflammatory drugs, decongestants, mucolytic agents).
  • Prophylactic antibiotic therapy is controversial. Although a middle-ear infection is a plausible secondary complication, this is not always the case in the acute phase.
  • Assess concomitant middle-ear barotrauma.
    • If present, consider referring the patient to an ENT specialist.
    • Use the O’Neill grading system or detail what you observe.
  • Assess the cranial nerve function.

Related Posts

Categories

 2021
 April
Aqua Pool Noodle ExercisesUnderwater Photographer and DAN Member Madelein Wolfaardt10 Simple Things You Can Do to Improve Your Underwater PhotographyCOVID-19 and Diving: March 2021 UpdateDiver Return After COVID-19 Infection (DRACO): A Longitudinal AssessmentGuidelines for Lifelong Medical Fitness to DiveExperienceFitness Myth or Fitness Fact?The Safety of Sports for Athletes With Implantable Cardioverter-DefibrillatorsCardiovascular Fitness and DivingHypertensionPatent Foramen Ovale (PFO)Headaches and DivingMiddle-Ear Barotrauma (MEBT)O’Neill Grading SystemMask Squeeze (Facial Barotrauma)Sinus BarotraumaInner-Ear Barotrauma (IEBT)Middle-Ear EqualisationAlternobaric VertigoDecompression IllnessOn-Site Neurological ExaminationTreating Decompression Sickness (The Bends)Top 5 Factors That Increase Your Risk of the BendsHow to Avoid Rapid Ascents and Arterial Gas EmbolismUnintended Rapid Ascent Due to Uncontrolled InflationUnexpected Weight LossFlying After DivingWisdom Tooth Extraction and DivingYour Lungs and DivingScuba Diving and DiabetesDiving after COVID-19: What We Know TodaySwimmer’s Ear (Otitis Externa)Motion SicknessFitness for DivingDiving After Bariatric SurgeryWhen to Consult a Health-Care Provider Before Engaging in Physical ActivitiesFinding Your FitnessHealth Concerns for Divers Over 50Risk Factors For Heart DiseaseJuggling Physical Exercise and DivingSeasickness Prevention and TreatmentMember to Member: Guidelines for SeniorsHigh-Pressure OphthalmologyOver-the-Counter Medications
 2020
 2019
 2018
 2016
immersion and bubble formation Accidents Acid reflux Acute ailments After anaesthesia Air Quality Air exchange centre Air hose failure Air supply Airway control Air Alert Diver Magazine Alternative gas mix Altitude changes Altitude sickness Aluminium Oxide Ama divers Amino acids Anaerobic Metabolism Animal life Annual renewal Apnea Apnoea Aquatic life Archaeology Arterial gas embolism Arthroscopic surgery Aspirin Aurel hygiene BCD BHP BLS BWARF Back adjustment Back pain Back treatment Backextensors Badages Bag valve mask Bahamas Balancing Bandaids Barbell back squat Barometric pressure Barotrauma Basic Life Support Batteries Bench press Benign prostate hyperplasia Benzophenones Beth Neale Biophysics Black Blood flow Blood thinners Blue Wilderness Blurred vision Boat safety Boesmansgat Bone fractures Bouyancy compensators Boyle's Law Boyle\'s Law Bradycardia Brain Breast Cancer Breath Hold Diving Breath holding Breath hold Breath-hold Breathing Gas Breathing gas contamination Breathing Breathold diving Broken bones Bruising Bubbleformation Buddy Exercise Buddy checks Buoyancy Burnshield CGASA CMAS CO2 COVID-19 Updates COVID-19 COVID CPR Cabin pressure Caissons diseas Camera settings Cameras Cancer Remission Cancer treatments Cancer Cannabis and diving Cannabis Cape Town Dive Festival Cape Town Dive Sites Cape Town CapeTown Carbon Monoxide Carbon dioxide Cardio health Cardiological Cardiomyopathy Chamber Safety Chamber science Charging batteries Charles' Law Charles\' Law Charles\\\' Law Charles\\\\\\\' Law Charles\\\\\\\\\\\\\\\' Law Charlie Warland Chemotherapy Chest compressions Children diving Chiropractic Chlorophll Christina Mittermeier Citizen Conservation Cleaning products Coastalexcursion Cold Water Cold care ColdWater Cold Commercial diving Commercial schools Composition Compressed Air Compressed gas Consercation Conservation Photographer Conservation photography Conservation Contact lenses Contaminants Contaminated air Coral Conservation Coral Reefs Coral bleaching CoralGroupers Corals Core strength Corona virus Coro Courtactions Cristina Mittermeier Crohns disease Crowns Crystal build up Crystallizing hoses Cutaneous decompression Cylinder Ruptures Cylinder handwheel Cylinder valves DAN Courses DAN Profile DAN Researchers DAN medics DAN members DAN report DCI DCS Decompressions sickness DCS theories DCS DEMP DM training DNA DReams Dalton's Law Dalton\'s Law Dalton\\\'s Law Dalton\\\\\\\'s Law Dalton\\\\\\\\\\\\\\\'s Law Danel Wenzel Dauin island Dean's Blue Hole Dean\'s Blue Hole Deco dives Decompression Illness Decompression Sickness Decompression Stress Decompression illsnes Decompression treatment Decompression Decorator crabs Deep diving Deep water exploration Deepest SCUBA Dive Delayed Offgassing Dental Dever Health Diaphragms Diopter Diseases Disinfection Dive Chamber Dive Computer Dive Destinations Dive H Dive Industry Dive Instruction Dive Instructor Dive Medical Form Dive Medical Dive Practices Dive Pros Dive Research Dive South Africa Dive Training Dive Travel Dive accidents Dive buddies Dive computers Dive courses Dive excursions Dive exercise Dive fitness Dive gear Dive heallth Dive health Dive medicals Dive medicines Dive medicine Dive operators Dive planning Dive safety 101 Dive safety Dive safe Dive staff DiveLIVE Diveleader training Diveleaders Diver Health Diver Profile Diver infliencers Diver on surface Divers Alert Diving Divas Diving Kids Diving Trauma Diving career Diving emergencies Diving emergency management Diving fit Diving guidelines Diving injuries Diving suspended Diving Dizziness Dolphins Domestic Donation Dowels Dr Rob Schneider Drift diving Drysuit diving Drysuit valves Drysuits Dyperbaric medicines EAPs EAP Ear pressure Ear wax Ears injuries Eco friendly Education Electronic Emergency action planning Emergency decompression Emergency plans Emergency underwater Oxygen Recompression Emergency Enviromental Protection Environmental factors Environmental impact Environmental managment Equalisation Equipment care Equipment failure Equipment inspection Evacuations Evacuation Evaluations Even Breath Exercise Exhaustion Extended divetime Extinguisher Extreme treatments Eye injuries FAQ Factor V Leiden Failures FalseBay Diving Fatigue Faulty equipment Female divers Fetus development Fillings Fire Coral Fire Safety Firefighting First Aid Equipment First Aid Kit First Aid Training First Aid kits Fish Identification Fish Life Fish Fit to dive Fitness Training Fitness to dive Fitness Flying Focus lights Fractures Francois Burman Fredive Free Student cover Free diving Free flow Freedive INstructor Freedive Training Freediver Freediving Instructors Freediving performance Freediving Gas Density Gas consumption Gas laws Gas mixes GasPerformance Gases Gass bubbles Gastoeusophagus Gastric bypass Gastroenterologist Gear Servicing Germs Gordon Hiles Great White Sharks Gutt irritations HCV HELP HIRA HMLI HMS Britanica Haemorhoid treatment Hazard Description Hazardous Marine life Hazardous marinelife Health practitioner Heart Attack Heart Health Heart Rate monitor Heart fitness Heart rates Heart rate Heart Heat stress Helium Hepatitis C Hepatitus B High Pressure vessels High temperatures Hip strength Hip surgery Hippocampus History Hot Humans Hydrate Hydration Hydrogen Hydroids Hydrostatic pressure Hygiene Hyperbaric Chamber Hyperbaric research Hyperbarics Hypothermia Hypoxia IdentiFin Imaging Immersion Immine systems In Water Recompression Indemnity form Indian Ocean Indonesia Inert gas Infections Infra red Imaging Injections Instinct Instruction Instructors Insurance Integrated Physiology International travel International Interval training Irritation Isotta housing Joint pain Junior Open Water Diver KZN South Coast Karen van den Oever Kate Jonker Kidneys Kids scubadiver Komati Springs KwaZulu Natal Labour laws Laryngospasm Lauren Arthur Learning to dive Legal Network Legal advice Legislation Lenses Leukemis Liability Risks Liability releases Liability Life expectancy Lifestyle Lightroom editing Live aboard diving Liver Toxicity Liver diseas Liz Louw Low blood pressure Low pressure deterioration Low volume masks Lung Irritation Lung function Lung injuries Lung squeeze Lung surgery Lung MOD Macro photography Maintenance Malaria Mammalian Dive Response Mammalian effect Marine Biology Marine Scientists Marine conservation Marine parks Marinelife Masks Master scuba diver Maximum operating depth Medical Q Medical emergencies Medical questionaire Medical statement Medicalresearch Medication Mehgan Heaney-Grier Mermaid Danii Mesophotic Middle ear pressure Mike Bartick Military front press Mixed Gas Mono Fins Mooring lines More pressure Motion sickness Mozambique Muscle pain Mycobacterium marinum National Geographic Nausea Nautilus Neck pain Neuro assessments Neurological assessments Nitrogen Narcosis Nitrogen build up Nitrox No-decompression Non-nano zinc oxide Non-rebreather Mask Nonrebreather masks Normal Air Nosebleeds Nuno Gomes O2 providers O2 servicing OOxygen maintenance Ocean Research Ocean pollution Oil contamination Open water divers Optical focus Orbital implants Oronasal mask Osteonecrosis Out and about Out of air Outreach Oxygen Administration Oxygen Cylinder Oxygen Units Oxygen deficit Oxygen deicit Oxygen dificiency Oxygen ears Oxygen equipment Oxygen masks Oxygen supplies Oxygen supply Oxygen systems Oxygen therapy Oxygen P J Prinsloo PADI Freedivers PFI PJP Tech Parentalsupervision Part 3 Partner Training Perspective Philippine Islands Philippines Phillipines Photographers Photography Physioball Physiology Physiotherapy Pills Pistons Planning Plastic Pneumonia Pneumothorax Poison Pollution Pool Diving Pool workout Post-dive Pre-dive Predive check Pregnancy Pregnant divers Preparation Prepared diver Press Release Preventions Professional rights Provider course Psycological Pulmanologist Pulmonary Bleb Pulmonary Edema Pulse Punture wounds Pure Apnea Purge RAID South Africa RCAP REEF Radio communications Range of motion Rashes Rebreather diving Rechargeable batteries. Recompression chamber Recompression treatment Recompression Recycle Reef Conservation Reef safe Reef surveyors Refractive correction Regulator failure Regulators Regulator Remote areas Renewable Report incidents Rescue Divers Rescue Procedure Rescue breathing Rescue breaths Rescue training Rescue Resume diving Return To Diving Return to diving Risk Assessments Risk assesments Risk assessment Risk elements Risk management SABS 019 SafariLive Safety Stop Safety SaherSafe Barrier Salty Wanderer Sanitising Sara Andreotti Saturation Diving Save our seas Science Scombroid Poisoning Scuba Air Quality Scuba Injury Scuba Instructor Scuba children Scuba dive Scuba health Scubalearners Scubalife Sea Horses Sealife Sea Shark Protection Shark Research Shark conservation Shark diving Sharks Shoulder strength Sideplank Signs and Symptoms Sit-ups Skin Bends Skin outbreak Skin rash Snorkeling Snorkels Social Distancing Sodwana Bay Solomon Islands South Africa Spinal bends Spinal cord DCS Spinal pain Splits Squeezes Stability exercise Standars Stay Fit Stents Step ups Stephen Frink Stepping up Strobe Lighting Stroke Submerged Sudafed Sulawesi Sun protection Sunscreen Supplemental oxygen Surface supplied Air Surfaced Surgeries Surgery Suspension training TRavel safety Tabata protocol Talya Davidoff Tattoes Technical Diving The Bends The truth Thermal Notions Tides Tips and trick Tooth squeeze Transplants Travel smarter Travel tips Travel Tropical Coastal Management Tunnelling Tweezers Ultrsound Umkomaas Unconsciousness Underground work Underwaater Photos Underwater hockey Underwater photographer Underwater photography Underwater pho University of Stellenbosch Urinary retention. Vaccines Vagus nerve Valsalva manoeuvers Valve stem seals Vape Vaping Vasopressors Vasvagal Syncope Venting Verna van Schak Virus infections Volatile fuels Washout treatments Wastewater Watchman device Water Resistance Water Weakness Weigang Xu Weights West Papua Western Cape Diving Wet diving bell Wetsuit fitting Wetsuits White balance Wide angles Wildlife Winter Wits Underwater Club Woman in diving Womans health Woman Women In Diving SA Women and Diving Women in diving Womens health Work of Breathing Workout World Records Wound dressings Wreck divers Wreck dive Wreckdiving Wrecks Yoga Youth diver Zandile Ndholvu Zoology abrasion acoustic neuroma excision adverse seas air-cushioned alert diver altitude anemia antibiotics anticoagulants antiseptics bandages barodontalgia bent-over barbell rows bioassays body art breathing air calories burn carbon dioxide toxicity cardiovascular cerebrospinal fluid checklist chemo port children child clearances closed circuit scuba corrective lenses currents cuts dead lift decompression algorithms decongestants decongestion dehydration dive injuries dive medicing dive ready child dive reflex dive tribe diver in distress diver rescue diver training dive diving attraction doctors domestic travel dri-suits drowning dry mucous membranes dry suits dry e-cigarettes ear spaces elearning electrolyte imbalance electroytes emergency action plans emergency assessment emergency training environmentally friendly equalising equalizing exposure injuries eyes fEMAL DIVERS fire rescue fitnes flexible tubing frediving freedivers gas bubble gas poisoning gastric acid gene expression health heartburn histidine hospital humidity immersion and bubble formation immersion pulmonary edema (IPE jaundice join DAN knee longevity lower stress malaise marielife marine pathogens medical issues medical procedures medical risk assesment medications mental challenge mental preparedness micro-organisims micro minor illness mucous membranes nasal steroids nasal near drowning nematocysts neurological newdivers nitrogen bubbles off-gassed operating theatre operations orthopeadic outgas pain perforation phillippines physical challenges pinched nerves plasters polyester-TPU polyether-TPU post dive posture prescription mask preserve prevention psychoactive pulmunary barotrauma rebreather mask rebreathers retinal detachment risk areas safety stops saturation scissors scuba equipment scuba single use sinus infections smoking snorkeling. spearfishing sterilising stings strength sub-aquatic sunscreen lotion swimmers ears tattoo care tecnical diver thermal protection tissue damage toxicity training trimix unified standards upwelling vision impaired warmers water quality zinc oxide