Sight Search

Fluorescence Imaging help Identify Coral Bleaching

The nearinfrared (NIR) fluorescence imaging system the authors call “the beast” includes a
camera, housing, tripod, a longpass (LP) near-infrared filter, tricolor or blue LED dive lights, shortpass (SP) light filters and a dual diopter holder for the filters. Divers can use a much
simpler setup to help with NIR imaging.
Text by Jittiwat Sermsripong, Latisha Jefferies, Abby Jennings, Andrea Giordano and Barry W. Hicks | Photos by Barry W. Hicks

We live in the Anthropocene. Humans affect the very world we inhabit. Deforestation, fossil fuel use and environmental pollutants such as plastics and pesticides are changing our world. The oceans and the reefs within them are not immune to these effects. Coral-bleaching events and the coral death that often follows are among the most serious challenges in marine ecology today. Despite decades of scientific investigation, researchers have not yet discovered an effective way to identify the onset of bleaching events, which result in the loss of the endosymbiotic algae that reside within corals. The algae contain chlorophyll and use photosynthesis to produce carbohydrates that they supply to the corals.

Without the algae, there’s no chlorophyll for the corals. Researchers can monitor changes in terrestrial chlorophyll by examining near-infrared chlorophyll fluorescence (NIRChlF), even by satellite, but they have done little work on near-infrared (NIR) imaging underwater. The first 6 feet of the ocean’s surface absorbs most NIR light from the sun, so aerial or satellite imaging
of NIRChlF isn’t possible.

We recently published a scientific paper using commercially available equipment to image NIR fluorescence from chlorophyll in corals.1 We lack the time and ocean access, however, to do much of the basic control work that might allow remote underwater imaging of NIRChlF to become a part of the solution to identifying bleaching events. We invite divers and underwater photographers who are willing to make a modest investment in their imaging equipment to help us further develop and improve our methodology. Any diver can become a part of the solution by engaging in citizen-science research. We affectionately call the camera setup we used to get data for our published work “the beast.” 
Not all the equipment is necessary to begin, but an understanding of how we have assembled our NIR fluorescence-imaging system should help others to mimic and improve upon it.
You must have a camera with custom white-balance settings and an underwater housing. You will need to remove the internal infrared filter, which you can do yourself if you are a camera expert or you can pay a commercial dealer about $250 to make the modification for you.

You will also need a longpass NIR filter (about $15) to put over the lens. If you want to get more serious, a pair of good tricolor or blue LED dive lights ($150–$1,000), hardware and tripod ($100–$400), shortpass light filters ($250) and a dual diopter holder for the filters ($250) will allow you to make your own similar beast setup.

To illustrate the process, we collected images of a great star coral (Montastraea cavernosa) on a night dive in the Caribbean Sea near Carriacou, Grenada. We used a camera with a macro lens on a tripod to take these images, but neither the tripod nor macro lens is an absolute necessity.
For the far-left image we used white-light illumination and no filter. The middle image is with blue-light illumination and a yellow filter for viewing green fluorescent proteins and red emission (mostly from chlorophyll). The right image is with blue LED or white illumination below 675 nanometers (nm) and an IR 720 nm filter on the camera showing only the NIRChlF.

The center image clearly shows that fluorescent proteins and chlorophyll are not identically distributed, which may explain why fluorescent proteins don’t prevent solar induced bleaching in the native reefs despite research indicating that they can act as a sunscreen. If this sunscreen is supposed to help protect the endosymbiotic algae inside the corals, it is not sufficiently applied to do the job. The NIRChlF image on the right confirms the chlorophyll distribution. Regions in the center image showing the most intense red fluorescence are also the  brightest in the NIRChF image.

Divers can perform this type of fluorescence imaging in daylight because of limited infrared light penetration below about 10 feet. To start your own imaging sequence, find a coral near a sandy bottom where the tripod can be set up to minimize impact. Use a white dive slate as a target for setting custom white balances on the camera; generate a separate setting to use each with each combination of lighting and filter set (white lighting with no filter, blue LED lighting with yellow filter, and blue lighting with a NIR 720 nm longpass filter). Using a tripod will ensure that all the images will be in register. A standard lens at a greater distance rather than a
macro lens might capture more information on larger specimens and without a narrow depth of focus, but it could require longer exposures and necessitate use of a tripod to prevent blurred images. A macro lens is desirable because it produces a greater level of fine structure onchlorophyll distributions, and the close working distance between camera and subject means the water absorbs less NIR light. As with all macro photography, issues such as narrow focal depth can be problematic, but once you get started you’ll be hooked.
This imaging sequence of a great star coral uses, from far left, white lighting with no filter, blue LED lighting with a yellow filter, and blue lighting with a near-infrared 720 nm longpass filter. The center image shows green fluorescent proteins and red emissions from chlorophyll. The image on the right shows near-infrared chlorophyll fluorescence.

We want to improve this imaging methodology so autonomous underwater vehicles (AUVs) can use it for remote imaging on large sections of the reef, similar to satellite imaging for terrestrial NIRChlF. While there are no guarantees, such technology might be able to identify the onset of a bleaching event. Besides the unique photos you get from underwater NIRChlF imaging, NIR fluorescence-imaging equipment can help with other research.

With assistance from the dive community, we would like to investigate the following questions:
• How deep can we photograph NIRChlF emission in daylight without external illumination?
• How deep can we find organisms that have endosymbionts containing chlorophyll?
• How far from specimens can we photograph NIRChlF  emission underwater with either ambient solar illumination (in daylight) or external LED illumination (at night)?
• What lenses work best at the maximum distance? 
• Which sponges have algal endosymbionts?
• What unexpected marine organisms (such as tunicates or bivalves) have chlorophyll-containing endosymbionts?
• Which organisms that normally contain chlorophyll (such as gorgonians) have members that do not?
• How much does chlorophyll content change seasonally in one coral?
• How much NIR does endolithic algae in bleached or diseased corals emit?
• Using video and time-lapse analysis, does chlorophyll redistribute when illuminated? Can this be detected? On what time scale? How does this vary with species?
• Can chlorophyll photobleaching in one polyp be overcome by donation of chlorophyll from a neighboring polyp?
• Art can motivate some people in a way that science cannot. Altering white balance, lighting and filters when performing underwater NIR fluorescence imaging can lead to color effects like those seen in terrestrial NIR images. What types of art can you produce to motivate others to pursue underwater NIR fluorescence imaging?

There clearly is much to be done. If you are interested in helping to conduct some of these experiments and would like more information, contact Barry Hicks at barry.hicks@afacademy.af.edu.

REFERENCE

1. Oh T, Sermsripong J, Hicks BW. Using scuba for in situ determination of chlorophyll distributions in corals by underwater near-infrared fluorescence imaging. J. Mar.
Sci. Eng. 2020; 8(1):53.

Categories

 2020
 2019
 2018
 2016
immersion and bubble formation Accidents Acid reflux Acute ailments After anaesthesia Air Quality Air exchange centre Air hose failure Airway control Air Alert Diver Magazine Alternative gas mix Altitude changes Altitude sickness Aluminium Oxide Ama divers Amino acids Anaerobic Metabolism Annual renewal Apnea Apnoea Archaeology Arterial gas embolism Arthroscopic surgery Aspirin Aurel hygiene BCD BHP BLS BWARF Back adjustment Back pain Back treatment Backextensors Badages Bag valve mask Bahamas Balancing Bandaids Barbell back squat Barometric pressure Barotrauma Basic Life Support Batteries Bench press Benign prostate hyperplasia Beth Neale Black Blood flow Blood thinners Blue Wilderness Blurred vision Boat safety Bone fractures Bouyancy compensators Boyle's Law Boyle\'s Law Bradycardia Brain Breast Cancer Breath Hold Diving Breath holding Breath hold Breath-hold Breathing Gas Breathing gas contamination Breathing Breathold diving Broken bones Bruising Bubbleformation Buddy Exercise Buddy checks Buoyancy Burnshield CGASA CMAS CO2 COVID-19 COVID CPR Cabin pressure Caissons diseas Camera settings Cancer Remission Cancer treatments Cancer Cannabis and diving Cannabis Cape Town Dive Festival Cape Town CapeTown Carbon Monoxide Carbon dioxide Cardio health Cardiological Cardiomyopathy Chamber Safety Chamber science Charging batteries Charles' Law Charles\' Law Charles\\\' Law Charles\\\\\\\' Law Charles\\\\\\\\\\\\\\\' Law Charlie Warland Chemotherapy Chest compressions Chiropractic Chlorophll Citizen Conservation Cleaning products Coastalexcursion Cold Water Cold care ColdWater Cold Commercial diving Commercial schools Compressed Air Compressed gas Consercation Conservation Contaminants Contaminated air Coral Conservation Coral Reefs Coral bleaching Corals Core strength Corona virus Courtactions Crohns disease Crowns Crystal build up Crystallizing hoses Cutaneous decompression DAN Courses DAN Profile DAN Researchers DAN medics DAN members DAN report DCI DCS Decompressions sickness DCS theories DCS DEMP DM training DNA DReams Dalton's Law Dalton\'s Law Dalton\\\'s Law Dalton\\\\\\\'s Law Dalton\\\\\\\\\\\\\\\'s Law Danel Wenzel Dauin island Dean's Blue Hole Deco dives Decompression Illness Decompression Sickness Decompression Stress Decompression illsnes Decompression treatment Decompression Deep diving Deep water exploration Delayed Offgassing Dental Diaphragms Diseases Dive Chamber Dive Computer Dive Destinations Dive H Dive Industry Dive Instruction Dive Instructor Dive Medical Form Dive Medical Dive Pros Dive Research Dive South Africa Dive Training Dive Travel Dive accidents Dive buddies Dive computers Dive excursions Dive fitness Dive gear Dive heallth Dive health Dive medicines Dive medicine Dive operators Dive planning Dive safety Dive safe Dive staff DiveLIVE Diveleader training Diveleaders Diver Health Diver Profile Diver infliencers Diver on surface Divers Alert Diving Divas Diving Kids Diving Trauma Diving career Diving emergencies Diving emergency management Diving fit Diving guidelines Diving injuries Diving suspended Diving Dizziness Dolphins Domestic Donation Dowels Dr Rob Schneider Drysuit diving Drysuit valves Drysuits Dyperbaric medicines EAPs EAP Ear pressure Ear wax Ears injuries Eco friendly Education Electronic Emergency action planning Emergency decompression Emergency plans Emergency underwater Oxygen Recompression Emergency Enviromental Protection Environmental factors Environmental impact Environmental managment Equalisation Equipment care Evacuations Evacuation Evaluations Even Breath Exercise Exhaustion Extended divetime Extinguisher Extreme treatments Eye injuries FAQ Factor V Leiden Failures Fatigue Faulty equipment Female divers Fillings Fire Coral Fire Safety Firefighting First Aid Equipment First Aid Kit First Aid Training First Aid kits Fish Identification Fish Fitness Training Fitness to dive Fitness Flying Fractures Francois Burman Fredive Free Student cover Free diving Free flow Freedive INstructor Freedive Training Freediver Freediving performance Freediving Gas Density Gas consumption Gas laws Gas mixes GasPerformance Gases Gastoeusophagus Gastric bypass Gastroenterologist Gear Servicing Gordon Hiles Great White Sharks Gutt irritations HCV HELP HIRA HMS Britanica Haemorhoid treatment Hazard Description Hazardous Marine life Hazardous marinelife Health practitioner Heart Attack Heart Health Heart Rate monitor Heart rates Heart rate Heart Heat stress Helium Hepatitis C Hepatitus B High temperatures Hip strength Hip surgery Hippocampus History Hot Humans Hydrate Hydration Hydrogen Hydroids Hydrostatic pressure Hyperbaric Chamber Hyperbaric research Hyperbarics Hypothermia Hypoxia IdentiFin Immersion Immine systems In Water Recompression Indemnity form Indian Ocean Indonesia Inert gas Infections Infra red Imaging Injections Instinct Instruction Instructors Insurance Integrated Physiology International travel International Interval training Irritation Joint pain Junior Open Water Diver KZN South Coast Kidneys Kids scubadiver KwaZulu Natal Labour laws Laryngospasm Lauren Arthur Learning to dive Legal advice Legislation Leukemis Liability Risks Liability releases Liability Life expectancy Lifestyle Lightroom editing Live aboard diving Liver Toxicity Liver diseas Low blood pressure Low pressure deterioration Low volume masks Lung Irritation Lung function Lung injuries Lung squeeze Lung surgery Lung MOD Maintenance Malaria Mammalian Dive Response Mammalian effect Marine Biology Marine Scientists Marine conservation Marine parks Marinelife Masks Master scuba diver Maximum operating depth Medical Q Medical emergencies Medical questionaire Medical statement Medication Mehgan Heaney-Grier Mermaid Danii Mesophotic Middle ear pressure Mike Bartick Military front press Mixed Gas Mono Fins Mooring lines More pressure Motion sickness Mozambique Muscle pain Mycobacterium marinum Nausea Nautilus Neck pain Neurological assessments Nitrogen Narcosis Nitrogen build up Nitrox No-decompression Non-rebreather Mask Normal Air Nosebleeds O2 providers O2 servicing OOxygen maintenance Ocean Research Ocean pollution Oil contamination Open water divers Orbital implants Oronasal mask Osteonecrosis Out and about Outreach Oxygen Cylinder Oxygen Units Oxygen deficit Oxygen deicit Oxygen dificiency Oxygen ears Oxygen equipment Oxygen masks Oxygen supply Oxygen therapy Oxygen P J Prinsloo PFI PJP Tech Part 3 Partner Training Philippine Islands Philippines Phillipines Photography Physioball Physiology Physiotherapy Pills Pistons Planning Plastic Pneumonia Pneumothorax Poison Pollution Pool Diving Post-dive Pre-dive Predive check Preparation Prepared diver Press Release Professional rights Provider course Psycological Pulmanologist Pulmonary Bleb Pulmonary Edema Pulse Punture wounds Pure Apnea Purge RAID South Africa RCAP REEF Radio communications Range of motion Rashes Rebreather diving Rechargeable batteries. Recompression chamber Recompression treatment Recompression Recycle Reef Conservation Reef surveyors Regulator failure Regulators Regulator Remote areas Renewable Report incidents Rescue Procedure Rescue breathing Rescue breaths Rescue training Rescue Resume diving Return to diving Risk Assessments Risk assesments Risk assessment Risk elements Risk management SABS 019 SafariLive Safety Stop Safety SaherSafe Barrier Salty Wanderer Sanitising Sara Andreotti Saturation Diving Save our seas Science Scombroid Poisoning Scuba Air Quality Scuba Injury Scuba Instructor Scuba children Scuba dive Scuba health Scubalearners Sea Horses Sealife Shark Protection Shark Research Shark conservation Shark diving Sharks Shoulder strength Sideplank Signs and Symptoms Sit-ups Skin Bends Skin outbreak Skin rash Snorkeling Snorkels Social Distancing Sodwana Bay Solomon Islands South Africa Spinal pain Splits Squeezes Stability exercise Standars Stay Fit Stents Step ups Stepping up Stroke Submerged Sudafed Sulawesi Supplemental oxygen Surface supplied Air Surfaced Surgeries Surgery Suspension training TRavel safety Tabata protocol Talya Davidoff Tattoes Technical Diving The Bends The truth Thermal Notions Tides Tips and trick Tooth squeeze Transplants Travel smarter Travel tips Travel Tropical Coastal Management Tunnelling Tweezers Ultrsound Umkomaas Unconsciousness Underground work Underwater hockey Underwater photographer Underwater photography Underwater pho University of Stellenbosch Urinary retention. Vaccines Vagus nerve Valsalva manoeuvers Vape Vaping Vasopressors Vasvagal Syncope Venting Virus infections Volatile fuels Washout treatments Wastewater Watchman device Water Resistance Water Weakness Weigang Xu Weights West Papua Wet diving bell Wetsuit fitting Wetsuits White balance Wide angles Winter Woman in diving Woman Women In Diving SA Women in diving Work of Breathing Workout Wound dressings Wreck divers Wreck dive Wreckdiving Wrecks Yoga Youth diver Zandile Ndholvu Zoology abrasion acoustic neuroma excision air-cushioned alert diver altitude anemia antibiotics anticoagulants antiseptics bandages barodontalgia bent-over barbell rows bioassays body art breathing air calories burn carbon dioxide toxicity cardiovascular cerebrospinal fluid checklist chemo port child clearances closed circuit scuba currents cuts dead lift decompression algorithms decongestants decongestion dehydration dive injuries dive medicing dive ready child dive reflex dive tribe diver in distress diver rescue diver training dive diving attraction doctors domestic travel dri-suits drowning dry mucous membranes dry suits dry e-cigarettes ear spaces elearning electrolyte imbalance electroytes emergency action plans emergency assessment equalising equalizing exposure injuries eyes fEMAL DIVERS fire rescue fitnes flexible tubing frediving freedivers gas bubble gas poisoning gastric acid gene expression health heartburn histidine hospital humidity immersion and bubble formation immersion pulmonary edema (IPE jaundice join DAN knee longevity lower stress malaise marine pathogens medical issues medical procedures medical risk assesment medications mental challenge micro-organisims minor illness mucous membranes nasal steroids nasal near drowning nematocysts neurological newdivers nitrogen bubbles off-gassed operating theatre operations orthopeadic outgas pain perforation phillippines physical challenges pinched nerves plasters polyester-TPU polyether-TPU post dive posture preserve prevention psychoactive pulmunary barotrauma rebreather mask rebreathers retinal detachment risk areas safety stops saturation scissors scuba equipment scuba single use sinus infections smoking snorkeling. spearfishing sterilising stings strength sub-aquatic swimmers ears tattoo care tecnical diver thermal protection toxicity training trimix unified standards vision impaired warmers water quality