Sight Search

The Future of Dive Medicine

By Peter Buzzacott, Ph.D., MPH

The past 40 years have been rife with medical advancements. Treatments for cancer are now routinely targeted to the individual, stomach ulcers are no longer thought to result from a stressful lifestyle, and statins have proven effective in secondary prevention of acute cardiovascular events. In dive medicine, human experiments shaped the current flying-after-diving guidelines, we know more about the effects of diving on the endothelium than ever before, and technical divers are now almost routinely exceeding 100 meters (328 feet) on rebreathers. The results of recent research into the association between decompression sickness (DCS) and genetics are tantalizing, decompression time for extravehicular excursions in space has been halved, and breath-hold divers have exceeded what was thought to be the limit of human endurance.
We are amid a technological revolution. Many of the science-fiction gadgets that wowed us in the early days of Star Trek, such as cellphones and self-opening doors, are now everyday realities. Dive computers have kept pace with the times, and yet divers are keenly awaiting medical technology developments, such as real-time carbon-dioxide sensors for rebreather diving and blood-glucose monitors for divers with diabetes. What the future holds for waterproof wearable fitness trackers is anyone's guess.

We have asked two leading researchers in dive medicine for their opinions on the direction in which dive medicine is headed and what advances they think, or hope, we might see in the next 30 to 40 years.

What are the most important outstanding issues in dive medicine, and how could they be solved in the future?

Stephen Thom, M.D., Ph.D.: Establishing the etiology of diving stresses — in particular, that of DCS — is important. Clearly, bubbles are a central element to DCS, but that does not actually answer the question of etiology. We still do not clearly understand the source(s) of bubble nucleation or the physiological consequences that arise from bubbles.

Jean-Eric Blatteau, M.D., Ph.D.: The understanding of the origin of DCS and immersion pulmonary edema (IPE) must be improved to better prevent their occurrence and optimize treatment.

Reported incidents of IPE have been increasing in recent years. In some cases it can lead to heart failure. IPE can occur in many circumstances, including breath-hold, open-circuit and rebreather diving as well as while swimming at the surface. The origin of IPE is multifactorial; a good understanding of the different heart, lung and ventilatory components is essential to improve prevention. Additional work is necessary to understand the mechanisms and identify subjects at risk.

DCS is the most common type of serious dive injury. Its neurological forms are among the most common, and they occur despite the diver respecting established limits and procedures in most cases. Despite treatment in hyperbaric centers, DCS has a 20 to 30 percent rate of complications. Research to improve the treatment of these injuries remains a major objective.

In addition, it is essential to better identify factors of individual sensitivity. For example, why do some people form more decompression bubbles than others when the dive conditions are the same? Or why do some subjects, at equal bubble level, have a lower tolerance for bubbles in their body and develop DCS?
How do you envision science contributing to dive medicine over the next 30 to 40 years?
Thom: Biological sciences are gaining ground on answering the previous questions and offering measures to diminish health risks.

Blatteau: We will evolve toward more personalized medicine, which in dive medicine will mean better identification and prevention of individual risk factors for dive injuries. Fundamental research will make it possible to not only understand the mechanisms of bubble formation (from gaseous nuclei in the form of nanobubbles) or the effects of bubbles at the biochemical and cellular levels but also build large databases of dive injuries to highlight the factors involved.

What developments do you hope to see come true? Do you have any predictions that seem unlikely now but may one day prove correct? An example is doctors Barry Marshall and Robin Warren forecasting that stomach ulcers would become curable.

Thom: I truly believe we will generate sufficient knowledge to prevent DCS in virtually all divers, and for the rare cases that do arise, treatment will not involve hyperbaric chambers.

Blatteau: Medicine evolves very quickly with new perspectives, for example, on the development of stem cells that repair damaged neurological tissue. These technologies may someday be applicable to neurological consequences of DCS. Advancements in molecular biology and genetic editing may allow us to further act at a preventive level.

In addition, hyperbaric therapy is evolving. Research on therapeutic gases such as helium, xenon and argon should improve the management of many neurological diseases, including neurological DCS.
The association between genetics and DCS has sparked interest in recent years. What practical applications of this research do think a young diver today might see in 30 to 40 years?

Thom: In the short term, I suspect genetic screening will provide an assessment of relative risk to an individual — that is, genetic tests will identify those individuals at higher risk for developing DCS with provocative diving. With further work, I believe genetic studies will identify the physiological reasons that certain individuals have greater risk, and with this knowledge there will be interventions (possibly drugs) that abrogate the added risk.

Blatteau: The identification of genetic factors associated with the risk of DCS is an important area of research. It is likely that over time we will be able to detect immune or inflammatory functions that are abnormally activated in certain subjects in the presence of bubbles. The current evolution of genetic "scissors" techniques (cutting and fixing genes) will undoubtedly make it possible to propose corrective actions in these subjects. Comparative physiology studies of the genetic mechanisms of adaptation to decompression in marine mammals could lead to interesting proposals.

Another field of medicine in full expansion concerns the bacteria that colonize the digestive tract, which is defined by the term microbiota. This microbiota is fairly stable and specific to each individual and has recently been shown to act on our immune system and be involved in many diseases.

We now understand that the microbiota is involved in the occurrence of DCS. Some types of microbiota may be beneficial, and others may be deleterious to the risk of developing DCS. The identification of microbiota should develop in the coming years and bring the possibility of preventive actions.

In the past 30 to 40 years we have seen the development of dive computers, nitrox, technical diving and rebreathers. What technological advances do you think or hope we might see in the future?

Thom: I hope we will see real-time monitoring devices that calculate environmental parameters along with an individual diver's physiological status to provide a readout on when a diver should change his or her actions to achieve diving goals (such as a desired depth or extended time underwater) and still avoid injury.

Blatteau: In the coming years the use of rebreathers will develop and become more widespread in recreational diving. Thanks to the inhalation of optimized oxygen partial pressures, the major interest will be to reduce the occurrence of DCS. It will be necessary to be vigilant, however, because the use of rebreathers exposes divers to other forms of dive injuries such as biochemical insults and IPE.

Researchers will develop dive computers with physiological sensors, which will allow personalized decompression that identifies relevant risk factors. The development of sensors for the automatic measurement of circulating bubbles in the body will be an essential contribution to adjusting decompression procedures.
Flexible, easily transportable and affordable hyperbaric chambers should be developed to help improve dive safety in remote areas.

Predive treatments (preconditioning) are another topic of significant interest in recent years. What new practices might we see on dive boats in the future?

Thom: There is a growing list of preconditioning interventions that nullify or at least diminish DCS risk, but I do not see these treatments as being practical for day-to-day diving. I envision that when detailed physiological explanations establish why preconditioning works, scientists will develop more easily applied interventions — probably in the form of pharmaceuticals — that achieve the same results.

Blatteau: The main objective of the preconditioning methods is to remove the gaseous nuclei before the start of the dive and thus avoid the formation of decompression bubbles that develop from these gaseous nuclei. Several simple methods, including aerobic exercise, hydration, exposure to heat, oxygen inhalation and exposure to vibrations, are effective in reducing the formation of decompression bubbles.

Some communities of military divers perform moderate aerobic exercise followed by hydration, but this practice is difficult to apply in recreational diving. Physical exercise for typically sedentary subjects is not advisable without training and verification of their exercise tolerances.

We can systematically advise moderate hydration (500 milliliters before diving) in hot conditions. Inhaling oxygen during the 30 minutes before diving is an easy proposal for deep and/or successive dives. The use of a sauna or vibrating mattress is still marginal, but it may be useful in the future before specific at-risk dives.

Dive computers are becoming increasingly personalized. What developments will we see regarding the personalized prevention of DCS?

Thom: I expect we will see real-time monitoring devices that couple detection of environmental parameters (depth, dive time, breathing-gas mixture) as well as a diver's physiological status to provide a moment-to-moment readout of how a diver might need to change activities to safely achieve a particular goal.

Blatteau: Personalized decompression is an essential approach, but it is currently only empirical. The next step will be identifying at-risk individuals based on relevant scientific and medical criteria. In addition, we must independently study and verify the application of "secure" decompression protocols for at-risk subjects. The establishment of, composition of and access to independent databases of dive computers will be important issues in the coming years.

What role do you think pharmaceutical treatments might play in both preventing and treating DCS?

I anticipate pharmaceuticals will markedly diminish risk and provide treatment for DCS, completely removing the need for recompression therapy.

Blatteau: For diving as a leisure activity, we do not advise the general use of a drug. On the other hand, for certain risky subjects or those already suffering from a dive injury, a drug with preventive aims might be useful in the future. The use of probiotics that act on the microbiota is another consideration.

In the treatment of DCS, drugs are already used in addition to hyperbaric oxygen. In cases of neurological DCS, studies indicate some benefit of evaluating additional treatments in humans such as fluoxetine or therapeutic gases such as xenon.

Personal wearable fitness trackers are common today. Given that cardiovascular problems are a leading cause of death in divers and that fitness for diving is important to minimize risk, what fitness developments do you foresee?

Thom: I expect there will be much more accurate determinations of what it means to be "fit for diving" other than merely a general assessment of cardiovascular health or exercise tolerance.

Blatteau: The current development of physiological sensors will be transposed to the practice of diving. Sensors for cardiovascular and/or respiratory measurements will certainly be very useful for the prevention of IPE. The generalization of automatic sensors to quantify circulating bubbles will also optimize and improve decompression safety for individuals.
Meet the Experts
Jean-Eric Blatteau, M.D., Ph.D., is the director of the Department of Diving and Hyperbaric Medicine at Sainte Anne Military Teaching Hospital in Toulon, France. He is the research director of the team for underwater therapeutic and operational research at the French Armed Forces Biomedical Research Institute and a past president of the Société de physiologie et de médecine subaquatiques et hyperbares de langue française (French Language Society for Underwater and Hyperbaric Physiology and Medicine).

Stephen Thom, M.D., Ph.D., is the director of research in the Department of Emergency Medicine at the University of Maryland School of Medicine. Among his research interests are the biochemical and physiological responses to oxidative stress with a focus on the impact of high-pressure gases. He earned degrees in microbial biology from the University of Rochester and served for 27 years as professor of emergency medicine and chief of hyperbaric medicine at the University of Pennsylvania.

Article from:

© Alert Diver — Q2 Spring 2018


Aqua Pool Noodle ExercisesUnderwater Photographer and DAN Member Madelein Wolfaardt10 Simple Things You Can Do to Improve Your Underwater PhotographyCOVID-19 and Diving: March 2021 UpdateDiver Return After COVID-19 Infection (DRACO): A Longitudinal AssessmentGuidelines for Lifelong Medical Fitness to DiveExperienceFitness Myth or Fitness Fact?The Safety of Sports for Athletes With Implantable Cardioverter-DefibrillatorsCardiovascular Fitness and DivingHypertensionPatent Foramen Ovale (PFO)Headaches and DivingMiddle-Ear Barotrauma (MEBT)O’Neill Grading SystemMask Squeeze (Facial Barotrauma)Sinus BarotraumaInner-Ear Barotrauma (IEBT)Middle-Ear EqualisationAlternobaric VertigoDecompression IllnessOn-Site Neurological ExaminationTreating Decompression Sickness (The Bends)Top 5 Factors That Increase Your Risk of the BendsHow to Avoid Rapid Ascents and Arterial Gas EmbolismUnintended Rapid Ascent Due to Uncontrolled InflationUnexpected Weight LossFlying After DivingWisdom Tooth Extraction and DivingYour Lungs and DivingScuba Diving and DiabetesDiving after COVID-19: What We Know TodaySwimmer’s Ear (Otitis Externa)Motion SicknessFitness for DivingDiving After Bariatric SurgeryWhen to Consult a Health-Care Provider Before Engaging in Physical ActivitiesFinding Your FitnessHealth Concerns for Divers Over 50Risk Factors For Heart DiseaseJuggling Physical Exercise and DivingSeasickness Prevention and TreatmentMember to Member: Guidelines for SeniorsHigh-Pressure OphthalmologyOver-the-Counter Medications
immersion and bubble formation Accidents Acid reflux Acute ailments After anaesthesia Air Quality Air exchange centre Air hose failure Air supply Airway control Air Alert Diver Magazine Alternative gas mix Altitude changes Altitude diving Altitude sickness Aluminium Oxide Ama divers Amino acids Anaerobic Metabolism Animal life Annual renewal Apnea Apnoea Aquatic life Aquatics and Scuba Diving Archaeology Arterial Gas Embolisms Arterial gas embolism Arthroscopic surgery Aspirin Aurel hygiene BCD BHP BLS BWARF Back adjustment Back pain Back treatment Backextensors Badages Bag valve mask Bahamas Balancing Bandaids Barbell back squat Barometric pressure Barotrauma Basic Life Support Batteries Becky Kagan Schott Bench press Benign prostate hyperplasia Benzophenones Beth Neale Beyond Standards Bilikiki Tours Biophysics Black Blood flow Blood thinners Blue Wilderness Blue economy Blurred vision Boat safety Boesmans gat Boesmansgat Bone fractures Bouyancy compensators Boyle's Law Boyle\'s Law Bradycardia Brain Breast Cancer Breath Hold Diving Breath holding Breath hold Breath-hold Breathing Gas Breathing gas contamination Breathing Breathold diving Bright Bank Broken bones Bruising Bubbleformation Buddy Exercise Buddy checks Buoyancy Burnshield CGASA CMAS CO2 COVID-19 Updates COVID-19 COVID CPR Cabin pressure Caissons diseas California Camera equipment Camera settings Cameras Cancer Remission Cancer treatments Cancer Cannabis and diving Cannabis Cape Town Dive Festival Cape Town Dive Sites Cape Town CapeTown Carbon Monoxide Carbon dioxide Cardio health Cardiological Cardiomyopathy Caribbean Carmel Bay Catalina Island Cave diving Challenging Environments Chamber Safety Chamber science Charging batteries Charles' Law Charles\' Law Charles\\\' Law Charles\\\\\\\' Law Charles\\\\\\\\\\\\\\\' Law Charlie Warland Chemotherapy Chest compressions Children diving Chiropractic Chlorophll Christina Mittermeier Citizen Conservation Cleaning products Closed Circuit Rebreathers Cmmunity partnership Coastalexcursion Cold Water Cold care ColdWater Cold Commercial Fishing Commercial diving Commercial schools Composition Compressed Air Compressed gas Consercation Conservation Photographer Conservation photography Conservation Contact lenses Contaminants Contaminated air Coral Conservation Coral Reefs Coral Restoration Coral bleaching CoralGroupers Corals Core strength Corona virus Coro Costamed Chamber Courtactions Cozumel Cristina Mittermeier Crohns disease Crowns Crystal build up Crystallizing hoses Cutaneous decompression Cylinder Ruptures Cylinder handwheel Cylinder valves DAN Courses DAN Profile DAN Researchers DAN medics DAN members DAN report DCI DCS Decompressions sickness DCS theories DCS DEMP DM training DNA DReams Dalton's Law Dalton\'s Law Dalton\\\'s Law Dalton\\\\\\\'s Law Dalton\\\\\\\\\\\\\\\'s Law Danel Wenzel Dangerous Marinelife Dauin island Dean's Blue Hole Dean\'s Blue Hole Deco dives Decompression Illness Decompression Sickness Decompression Stress Decompression illsnes Decompression treatment Decompression Decorator crabs Deep diving Deep water exploration Deepest SCUBA Dive Delayed Offgassing Dental Dever Health Diaphragms Diopter Diseases Disinfection Dive Buddy Dive Chamber Dive Computer Dive Destinations Dive H Dive Industry Dive Instruction Dive Instructor Dive Medical Form Dive Medical Dive Practices Dive Pros Dive Research Dive Safety Tips Dive South Africa Dive Training Dive Travel Wakatobi Dive Travel Dive accidents Dive buddies Dive computers Dive courses Dive excursions Dive exercise Dive experience Dive fitness Dive gear Dive heallth Dive health Dive medicals Dive medicines Dive medicine Dive operators Dive planning Dive procedures Dive safety 101 Dive safety Dive safe Dive skills Dive staff Dive travels DiveLIVE Diveleader training Diveleaders Diver Health Diver Profile Diver infliencers Diver on surface Divers Alert Divesites Diving Divas Diving Kids Diving Programs Diving Trauma Diving career Diving emergencies Diving emergency management Diving fit Diving guidelines Diving injuries Diving suspended Diving Dizziness Dolphins Domestic Donation Dowels Dr Rob Schneider Drift diving Drysuit diving Drysuit valves Drysuits Dyperbaric medicines EAPs EAP Ear pressure Ear wax Ears injuries Eco friendly Education Electronic Emergency action planning Emergency decompression Emergency plans Emergency underwater Oxygen Recompression Emergency Enviromental Protection Environmental factors Environmental impact Environmental managment Equalisation Equipment care Equipment failure Equipment inspection Evacuations Evacuation Evaluations Even Breath Exercise Exhaustion Exposure Protection Extended divetime Extinguisher Extreme treatments Eye injuries FAQ Factor V Leiden Failures FalseBay Diving Fatigue Faulty equipment Female divers Fetus development Fillings Fire Coral Fire Safety Firefighting First Aid Equipment First Aid Kit First Aid Training First Aid kits Fish Identification Fish Life Fish Fit to dive Fitness Training Fitness to dive Fitnesstrainng Fitness Flying Focus lights Foundations Fractures Francesca Diaco Francois Burman Fredive Free Student cover Free diving Free flow Freedive INstructor Freedive Training Freediver Freediving Instructors Freediving performance Freediving Gar Waterman Gas Density Gas consumption Gas laws Gas mixes GasPerformance Gases Gass bubbles Gastoeusophagus Gastric bypass Gastroenterologist Gear Servicing Germs Geyer Bank Giant Kelp Forest Giant Kelp Gobies Gordon Hiles Great White Sharks Guinness World Record Gutt irritations HCV HELP HIRA HMLI HMS Britanica Haemorhoid treatment Hazard Description Hazardous Marine life Hazardous marinelife Health practitioner Heart Attack Heart Health Heart Rate monitor Heart fitness Heart rates Heart rate Heart Heat stress Helium Hepatitis C Hepatitus B Hiatal Hernia High Pressure vessels High temperatures Hip strength Hip surgery Hippocampus History Hot Humans Hydrate Hydration Hydrogen Hydroids Hydrostatic pressure Hygiene Hyperbaric Chamber Hyperbaric research Hyperbarics Hypothermia Hypoxia I-52 found INclusivity IdentiFin Imaging Immersion Immine systems In Water Recompression Indemnity form Indian Ocean Indonesia Inert gas Infections Infra red Imaging Injections Inner ear Instinct Instruction Instructors Insurance Integrated Physiology International travel International Interval training Irritation Irukandji Syndrome Isotta housing Joint pain Junior Open Water Diver KZN South Coast Karen van den Oever Kate Jonker KateJonker Kidneys Kids scubadiver Komati Springs KwaZulu Natal Labour laws Lake Huron Laryngospasm Lauren Arthur Learning to dive Legal Network Legal advice Legislation Lembeh Straights Lenses Leukemis Liability Risks Liability releases Liability Life expectancy Lifestyle Lightroom editing Live aboard diving Liver Toxicity Liver diseas Liz Louw Lost at sea Low blood pressure Low pressure deterioration Low volume masks Lung Irritation Lung function Lung injuries Lung squeeze Lung surgery Lung MOD Macro photography Maintenance Malaria Mammalian Dive Response Mammalian effect Mandarin Fish Marine Biology Marine Science Marine Scientists Marine conservation Marine parks Marinelife Masks Master scuba diver Maximum operating depth Medical Q Medical emergencies Medical questionaire Medical statement Medicalresearch Medication Mehgan Heaney-Grier Mermaid Danii Mesophotic Michael Aw Middle ear pressure Mike Bartick Military front press Misool Resort Raja Ampat Mixed Gas Mono Fins Mooring lines More pressure Motion sickness Mozambique Muscle pain Mycobacterium marinum National Geographic Nausea Nautilus Ndibranchs Neck pain Neoprene layers Neuro assessments Neurological assessments Nitrogen Narcosis Nitrogen build up Nitrox No-decompression Non-nano zinc oxide Non-rebreather Mask Nonrebreather masks Normal Air North Sulawesi Nosebleeds Nuno Gomes O2 providers O2 servicing OOxygen maintenance Ocean Projects Ocean Research Ocean pollution Oil contamination Open water divers Optical focus Orbital implants Oronasal mask Osteonecrosis Out and about Out of air Outer ears Outreach Overhead Envirenments Oxygen Administration Oxygen Cylinder Oxygen Units Oxygen deficit Oxygen deicit Oxygen dificiency Oxygen ears Oxygen equipment Oxygen masks Oxygen supplies Oxygen supply Oxygen systems Oxygen therapy Oxygen P J Prinsloo PADI Freedivers PFI PJP Tech Parentalsupervision Part 3 Partner Training Perspective Philippine Islands Philippines Phillipines Photographers Photography tips Photography Physical Fitness Physioball Physiology Physiotherapy Pills Pistons Planning Plastic Pneumonia Pneumothorax Poison Pollution Pool Diving Pool workout Post-dive Pre-dive Predive check Pregnancy Pregnant divers Preparation Prepared diver Press Release Preventions Professional rights Provider course Psycological Pulmanologist Pulmonary Barotrauma Pulmonary Bleb Pulmonary Edema Pulse Punture wounds Pure Apnea Purge RAID South Africa RCAP REEF Radio communications Range of motion Rashes Rebreather diving Rebreatherdive Rechargeable batteries. Recompression chamber Recompression treatment Recompression Recycle Reef Chcek Reef Conservation Reef safe Reef surveyors Refractive correction Regulator failure Regulators Regulator Remote areas Renewable Report incidents Rescue Divers Rescue Procedure Rescue breathing Rescue breaths Rescue training Rescue Resume diving Return To Diving Return to diving Risk Assessments Risk assesments Risk assessment Risk elements Risk management Roatan Marine Park Roatan SABS 019 SMB SafariLive Safety Gear Safety Stop Safety SaherSafe Barrier Salty Wanderer Sanitising Sara Andreotti Sardine Run Saturation Diving Save our seas Schrimps Science Scombroid Poisoning Scuba Air Quality Scuba Guru Scuba Injury Scuba Instructor Scuba children Scuba dive Scuba education Scuba health Scubalearners Scubalife Sea Horses Sea slugs Sealife Sea Shallow dives Shark Protection Shark Research Shark conservation Shark diving Sharks Shipwrecks Shoulder strength Sideplank Signs and Symptoms Sit-ups Skin Bends Skin outbreak Skin rash Snorkeling Snorkels Social Distancing Sodwana Bay Solomon Islands Sonnier bank South Africa Spinal bends Spinal cord DCS Spinal pain Splits Squeezes Squid Run Stability exercise Standars Stay Fit Stents Step ups Stephen Frink Stepping up Strobe Lighting Stroke Submerge tech Submerged Sudafed Sulawesi Sun protection Sunscreen Supplemental oxygen Surface Marker Buoys Surface supplied Air Surfaced Surgeries Surgery Suspension training Symbiosis TRavel safety Tabata protocol Talya Davidoff Tattoes Tec Clark Technical Diving Technical divng The Bends The greatest Shoal The truth Thermal Notions Thunder Bay National Marine Sanctuary Tides Tips and trick Tooth squeeze Transplants Travel smarter Travel tips Travel Tropical Coastal Management Tunnelling Tweezers Ultrsound Umkomaas Unconsciousness Underground work Underseaa world Underwaater Photos Underwater floral Gardens Underwater hockey Underwater photographer Underwater photography Underwater pho Underwater University of Stellenbosch Urinary retention. Vaccines Vagus nerve Valsalva manoeuvers Valve stem seals Vape Vaping Vasopressors Vasvagal Syncope Venting Verna van Schak Virus infections Volatile fuels WWII wrecks War stories Washout treatments Wastewater Watchman device Water Resistance Water Weakness Weigang Xu Weights West Papua Western Cape Diving Wet Lenses Wet diving bell Wetsuit fitting Wetsuites Wetsuits White balance Wide Angle Photos Wide angles Wildlife Winter Wits Underwater Club Woman in diving Womans health Woman Women In Diving SA Women and Diving Women in diving Womens health Work of Breathing Workout World Deeepst Dive Record World Records Wound dressings Wreck divers Wreck dive Wreck diving Wreckdiving Wrecks Yoga Youth diver Zandile Ndholvu Zoology abrasion absolute pressure acoustic neuroma excision adverse seas air-cushioned alert diver altitude alveolar walls anemia antibiotics anticoagulants antiseptics bandages barodontalgia bent-over barbell rows bioassays body art breathing air calories burn carbon dioxide toxicity cardiovascular cerebrospinal fluid cervical spine checklist chemo port children child chronic obstructive pulmonary disease clearances closed circuit scuba corrective lenses currents cuts dead lift decompression algorithms decongestants decongestion dehydration dive injuries dive medicing dive ready child dive reflex dive tribe diver in distress diver rescue diver training dive diving attraction doctors domestic travel dri-suits drowning dry mucous membranes dry suits dry e-cigarettes ear spaces elearning electrolyte imbalance electroytes emergency action plans emergency assessment emergency training environmentally friendly equalising equalizing exposure injuries eyes fEMAL DIVERS fire rescue fitnes flexible tubing frediving freedivers gas bubble gas poisoning gastric acid gene expression health heartburn histidine hospital humidity immersion and bubble formation immersion pulmonary edema (IPE informal education isopropyl alcohol jaundice join DAN knee laparoscopic surgery longevity lower stress malaise marielife marine pathogens medical issues medical procedures medical risk assesment medications mental challenge mental preparedness micro-organisims micro minor illness mucous membranes nasal steroids nasal near drowning nematocysts neurological newdivers nitrogen bubbles off-gassed operating theatre operations orthopeadic otitis media outgas pain perforation phillippines phrenic nerve physical challenges pinched nerves plasters pneumoperitoneum polyester-TPU polyether-TPU post dive posture prescription mask preserve prevention proper equalization psychoactive pulmonary barotrauma. pulmonary injury. pulmunary barotrauma radiation rebreather mask rebreathers retinal detachment risk areas safety stops saturation scissors scuba equipment scuba single use sinus infections smoking snorkeling. spearfishing sterilising stings strength sub-aquatic sunscreen lotion swimmers ears tattoo care tecnical diver thermal protection tissue damage toxicity training trimix unified standards upwelling vision impaired warmers water quality zinc oxide