Emergency Oxygen units
By Robert N. Rossier

Proper care and maintenance is vital to ensure yours is ready for action.
Nobody likes bad news, but sometimes a diving tragedy serves as an important reminder. A fatal dive accident on a liveaboard in the Maldives in 2008 was just such a case. The accident involved carbon monoxide contamination of breathing gas, which caused the death of one diver and injured nine others. Among the disheartening details from the news reports: The shipboard emergency oxygen system was broken, and thus oxygen could not be provided to the victims.
In a diving emergency, oxygen first aid can save lives (See "First Aid Refresher"), but only if the emergency kit is fully charged and in good operating condition. Proper maintenance is vital, especially in tropical environments.
Maintenance Concerns
Emergency oxygen systems do not require an inordinate amount of maintenance, but they do require periodic attention. The problem becomes one of "out of sight, out of mind." Most emergency oxygen systems aren't used regularly, and over time components made of plastic, rubber and other synthetic materials can deteriorate and become brittle. Oxygen systems should be professionally serviced at least every two years, more often if they are used heavily. (For a list of approved service centers, visit DAN Training and Education: Oxygen Fill Stations.)
Beyond periodic professional maintenance, the best practice to ensure the readiness of an emergency oxygen system is to remove the unit from the boat after each trip and completely inspect it. For commercial operators, DAN® recommends a bimonthly check of shipboard emergency oxygen systems.
First, inventory all parts, and make sure all components are available. "Once, on a DAN video shoot for a training program, we asked to borrow an oxygen cylinder from the boat's supply because we ran out and needed just a bit more," says Eric Douglas, director of DAN Training. "It took the crew half an hour to find all the parts to the oxygen unit on board because they had been stowed in various places."
When all parts are accounted for, make sure the components are in good condition and ready for use. Look for these common problems:
Uncharged or empty cylinders — Before heading out on a dive or dive trip, ensure that the oxygen cylinder is full. To be filled, oxygen cylinders must also be hydro-tested every five years, so check the hydrostatic test date as part of the bimonthly inspection.
Corroded regulators and components — Perhaps the single biggest environmental concern regarding oxygen systems is corrosion of the metal parts. The locker of a dive boat represents a harsh environment with plenty of heat, humidity and corrosive salts. "Even the slightest amount of salt air that gets trapped inside a case and then sealed up begins to corrode the equipment," Douglas says. "We've opened up units stored on dive boats that are so rusted and corroded you would be afraid to turn them on for fear they would explode."
To protect an oxygen system from corrosion, store it in a watertight case with a silica gel packet to absorb any moisture trapped inside.
Damaged regulator and control valve assembly — The regulator/control valve is really the heart of the emergency oxygen system, and it must also be kept clean, dry and free from physical damage. Bob Eberly, president of EMS Technologies in Leola, Pa., said one potential problem with the cylinder/regulator assembly is physical damage to the pressure gauge. Mishandling, dropping or improperly stowing the emergency oxygen system can sometimes result in a damaged gauge that may not provide a reliable pressure reading. If physical damage to the pressure gauge or the regulator assembly itself is noted, have the unit repaired.
Damaged or deformed cylinder-regulator seals — Another potential problem with an emergency oxygen system involves the seal between the oxygen cylinder and the regulator assembly. A Public Health Notification updated by the U.S. Food and Drug Administration and the National Institute for Occupational Safety and Health in 2006 revealed that faulty or improper sealshave resulted in at least a dozen regulator fires. At issue were the two different types of seals commonly used in emergency oxygen systems; they have decidedly different characteristics.
One type of seal is a crushable plastic or nylon device designed for a single use. When the regulator is tightened to the cylinder, the material deforms to create a good seal, but the deformation is permanent. If these seals are reused, they require additional torque to ensure a good seal. If they start to leak, the friction caused by the flow of oxygen across the face of the seal can cause ignition.
Many manufacturers recommend a different type of seal, referred to as a "sealing washer," that is designed for multiple uses. These consist of metallic rings encompassing an elastometric element made of a flexible polymer. These are generally more expensive than the crushable seal, but they can be safely reused many times without the need for additional torque to ensure a proper seal. All DAN oxygen units come equipped with this type of "oxygen washer."
Deteriorated delivery masks — Heat and exposure to the elements can result in deterioration and cracking of rubber and synthetic components. "We often see old masks left to harden and turn brown in cases," Douglas says. "Non-rebreather masks are designed for single-patient use and should be kept in their protective bag until they are needed. We often see an old mask wadded up inside the case that was used for training at some point, and that is the only mask available for use in an emergency."
Oxygen System Basics
Emergency oxygen systems come in various sizes and styles, but most incorporate the same basic elements: a high-pressure oxygen storage cylinder, a regulator/control valve assembly and a delivery mask.
The two primary types of emergency oxygen systems for divers are constant-flow systems and demand systems. Constant-flow systems provide a regulated, and in some cases adjustable, flow of oxygen to the delivery mask. Demand systems provide oxygen in response to the user's inhalation, thus delivering a higher percentage of oxygen and wasting less gas. Because treatment needs can vary from case to case, DAN recommends a multi-function system that can provide oxygen using both the demand and constant-flow options.
© Alert Diver — Winter 2010

Proper care and maintenance is vital to ensure yours is ready for action.
Nobody likes bad news, but sometimes a diving tragedy serves as an important reminder. A fatal dive accident on a liveaboard in the Maldives in 2008 was just such a case. The accident involved carbon monoxide contamination of breathing gas, which caused the death of one diver and injured nine others. Among the disheartening details from the news reports: The shipboard emergency oxygen system was broken, and thus oxygen could not be provided to the victims.
In a diving emergency, oxygen first aid can save lives (See "First Aid Refresher"), but only if the emergency kit is fully charged and in good operating condition. Proper maintenance is vital, especially in tropical environments.
Maintenance Concerns
Emergency oxygen systems do not require an inordinate amount of maintenance, but they do require periodic attention. The problem becomes one of "out of sight, out of mind." Most emergency oxygen systems aren't used regularly, and over time components made of plastic, rubber and other synthetic materials can deteriorate and become brittle. Oxygen systems should be professionally serviced at least every two years, more often if they are used heavily. (For a list of approved service centers, visit DAN Training and Education: Oxygen Fill Stations.)
![]() |
Beyond periodic professional maintenance, the best practice to ensure the readiness of an emergency oxygen system is to remove the unit from the boat after each trip and completely inspect it. For commercial operators, DAN® recommends a bimonthly check of shipboard emergency oxygen systems.
First, inventory all parts, and make sure all components are available. "Once, on a DAN video shoot for a training program, we asked to borrow an oxygen cylinder from the boat's supply because we ran out and needed just a bit more," says Eric Douglas, director of DAN Training. "It took the crew half an hour to find all the parts to the oxygen unit on board because they had been stowed in various places."
When all parts are accounted for, make sure the components are in good condition and ready for use. Look for these common problems:
Uncharged or empty cylinders — Before heading out on a dive or dive trip, ensure that the oxygen cylinder is full. To be filled, oxygen cylinders must also be hydro-tested every five years, so check the hydrostatic test date as part of the bimonthly inspection.
Corroded regulators and components — Perhaps the single biggest environmental concern regarding oxygen systems is corrosion of the metal parts. The locker of a dive boat represents a harsh environment with plenty of heat, humidity and corrosive salts. "Even the slightest amount of salt air that gets trapped inside a case and then sealed up begins to corrode the equipment," Douglas says. "We've opened up units stored on dive boats that are so rusted and corroded you would be afraid to turn them on for fear they would explode."
To protect an oxygen system from corrosion, store it in a watertight case with a silica gel packet to absorb any moisture trapped inside.
Damaged regulator and control valve assembly — The regulator/control valve is really the heart of the emergency oxygen system, and it must also be kept clean, dry and free from physical damage. Bob Eberly, president of EMS Technologies in Leola, Pa., said one potential problem with the cylinder/regulator assembly is physical damage to the pressure gauge. Mishandling, dropping or improperly stowing the emergency oxygen system can sometimes result in a damaged gauge that may not provide a reliable pressure reading. If physical damage to the pressure gauge or the regulator assembly itself is noted, have the unit repaired.
Damaged or deformed cylinder-regulator seals — Another potential problem with an emergency oxygen system involves the seal between the oxygen cylinder and the regulator assembly. A Public Health Notification updated by the U.S. Food and Drug Administration and the National Institute for Occupational Safety and Health in 2006 revealed that faulty or improper sealshave resulted in at least a dozen regulator fires. At issue were the two different types of seals commonly used in emergency oxygen systems; they have decidedly different characteristics.
One type of seal is a crushable plastic or nylon device designed for a single use. When the regulator is tightened to the cylinder, the material deforms to create a good seal, but the deformation is permanent. If these seals are reused, they require additional torque to ensure a good seal. If they start to leak, the friction caused by the flow of oxygen across the face of the seal can cause ignition.
Many manufacturers recommend a different type of seal, referred to as a "sealing washer," that is designed for multiple uses. These consist of metallic rings encompassing an elastometric element made of a flexible polymer. These are generally more expensive than the crushable seal, but they can be safely reused many times without the need for additional torque to ensure a proper seal. All DAN oxygen units come equipped with this type of "oxygen washer."
Deteriorated delivery masks — Heat and exposure to the elements can result in deterioration and cracking of rubber and synthetic components. "We often see old masks left to harden and turn brown in cases," Douglas says. "Non-rebreather masks are designed for single-patient use and should be kept in their protective bag until they are needed. We often see an old mask wadded up inside the case that was used for training at some point, and that is the only mask available for use in an emergency."
Oxygen System Basics
Emergency oxygen systems come in various sizes and styles, but most incorporate the same basic elements: a high-pressure oxygen storage cylinder, a regulator/control valve assembly and a delivery mask.
The two primary types of emergency oxygen systems for divers are constant-flow systems and demand systems. Constant-flow systems provide a regulated, and in some cases adjustable, flow of oxygen to the delivery mask. Demand systems provide oxygen in response to the user's inhalation, thus delivering a higher percentage of oxygen and wasting less gas. Because treatment needs can vary from case to case, DAN recommends a multi-function system that can provide oxygen using both the demand and constant-flow options.
© Alert Diver — Winter 2010
Posted in Alert Diver Winter Editions
Tagged with Oxygen Units, OOxygen maintenance, rebreather mask, Oronasal mask, Oxygen Cylinder
Tagged with Oxygen Units, OOxygen maintenance, rebreather mask, Oronasal mask, Oxygen Cylinder
Categories
2021
March
Old Habits Die HardSave a Diver, Save YourselfCylinder SafetyUndercover CrabsReef safe sunscreenPhysics, Biophysics and Decompression SicknessModels and Marine LifeSunscreen and CoralCristina Mittermeier: Commitment to ConservationDiving After a StrokeCurrent DivesThis Bites: Prevention TreatmentEnvironmental Considerations for Disinfection
April
Aqua Pool Noodle ExercisesUnderwater Photographer and DAN Member Madelein Wolfaardt10 Simple Things You Can Do to Improve Your Underwater PhotographyCOVID-19 and Diving: March 2021 UpdateDiver Return After COVID-19 Infection (DRACO): A Longitudinal AssessmentGuidelines for Lifelong Medical Fitness to Dive
2020
January
February
Group Fitness at the PoolHow to Rescue a Distressed diver at the SurfaceHow to manage Near-DrowningNo Sit-ups no problem How to manage MalariaHow to manage Oxygen Deficiency (Hypoxia)What to do when confronted by a sharkHow to manage Scombroid PoisoningHow to perform a Deep Diver RescueHow to perform One-rescuer CPRHow to perform a Neurological Assessment
March
DAN’s Quick Guide to Properly Disinfecting Dive GearCOVID-19 : Prevention Recommendations for our Diving CommunityGermophobia? - Just give it a reasonable thoughtScuba Equipment care – Rinsing and cleaning diving equipmentCOVID-19 and DAN MembershipFurther limitations imposed on travels and considerations on diving activitiesDAN Membership COVID-19 FAQsLancet COVID-19 South African Testing SitesCOVID-19 No Panic Help GuideGetting Decompression Sickness while FreedivingDown in the DumpsCardiovascular Disease and DivingDelayed Off-GassingDiving after Dental surgeryDiving with Multiple MedicationsPygmy Seahorses: Life AquaticAfrica DustCOVID-19 Myth BustersScuba Units Are Not Suitable Substitutes for VentilatorsDisinfection of Scuba Equipment and COVID-19Physioball Stability Exercises
April
COVID-19 AdvisoryScuba Equipment Care - Drying & Storing Your GearTransporting Diving Lights & BatteriesHow to Pivot Your Message During a CrisisTourism Relief FundCOVID-19 Business Support ReviewDiving After COVID-19: What We Know TodayEUBS-ECHM Position Statement on Diving ActivitiesPart 2: COVID-19 Business Support ReviewPress Release
May
Diving in the Era of COVID-19Dive Operations and COVID-19: Prepping for ReturnCOVID-19 & Diving Activities: 10 Safety RecommendationsCOVID-19: Surface Survival TimesThe Philippines at its FinestThe Logistics of ExplorationThe Art of the Underwater SelfieShooter: Douglas SeifertFAQs Answered: Disinfecting Scuba EquipmentStock your First-Aid KitResearch and OutreachCovid-19 ResearchOut of the BlueEffects of Aspirin on DivingThe New Pointy end of DivingDiving and Hepatitis CCaissons, Compressed-Air work and Deep TunnellingPreparing to Dive in the New NormalNew Health Declaration Form Sample Addressing C-19 IssuesDiving After COVID 19: What Divers Need to Know
June
Travel Smarter: PRE-TRIP VACCINATIONSAttention-Deficit/Hyperactivity Disorder and DivingCOVID-19: Updated First Aid Training Recommendations From DANDiving with a Purpose in National Marine SanctuariesStay Positive Through the PandemicFor the Dive Operator: How to Protect Your Staff & ClientsStudying Deep reefs and Deep diversAsking the Right QuestionsLung squeeze under cold diving conditions
July
Dive DeprivationVolunteer Fish Surveys: Engage DiversDAN Member Profile: Mehgan Heaney-GrierTravel Smarter: Don’t Cancel, Reschedule InsteadDive Boat Fire SafetyRay of HopePartner ExercisesDiving at AltitudeAluminium ExposureHip FracturesAcoustic NeuromaGuidelines for Lifelong Medical Fitness to DiveNew Dive Medical Forms
August
Women in Diving: Lauren Arthur, Conservationist & Natural History Story TellerWomen in Diving: Dr Sara Andreotti White Shark ResearcherTiming ExerciseWomen in Diving: The Salty Wanderer, Charlie WarlandWomen in Diving: Beth Neale, Aqua soul of freedivingWomen in Diving: Diving and spearfishing Diva, Jean HattinghWomen in Diving: Zandile Ndhlovu, The Black Mermaid
September
October
Freediving For ScienceStep Exercises with CardioFluorescence Imaging help Identify Coral BleachingChildren and DivingThe Watchman device and divingScuba Diving and Factor V Leiden gene mutationNitrogen Narcosis at shallow depthsOil and Particulates: Safe levels in Breathing Air at depthDive Principles for Coping with COVID-19The Importance of a Predive Safety CheckTalya Davidoff: the 'Plattelandse Meisie' Freediver
2019
February
April
May
DAN Press ReleaseYour Dive Computer: Tips and tricks - PART 1Your Dive Computer: Tips and tricks - PART 2Aural HygieneDCS AheadHow Divers Can Help with coral conservationRed Tide and shellfish poisoningDiving after Kidney DonationDiving with hypertrophic cardiomyopathyEmergency Underwater Oxygen Recompression
June
July
September
October
November
Exercise drills with DowelsHeart-rate TrainingCultivating ConservationTRavel Smarter : Evaluating an unfamiliar Dive operatorChallenging the Frontiers of Decompression ResearchTravel Smarter: Plan for Medical EmergenciesWhen should I call my Doctor?DAN Student Medical Expense CoverageAdvice, Support and a LifelineWetsuits and heat stressDiving after Chiropractic adjustments
2018
April
Flying after pool diving FAQLung squeeze while freediving FAQDiving after Bariatric surgery FAQMarine injuries FAQVasovagal Syncope unpredictable FAQIncident report procedure FAQDiving after knee surgery FAQDiving when in RemissionDive with orbital Implant FAQInert gas washout FAQOxygen ears FAQPost Decompression sicknessChildren and diving. The real concerns.Diving after SurgeryPhysiology of Decompresssion sickness FAQDiving and regular exerciseGordon Hiles - I am an Underwater Cameraman and Film MakerScuba Air QualityBreath-hold diving. Part 3: The Science Bit!Compensation Legislation and the Recreational DiverCape Town DivingFive pro tips for capturing better images in cold waterThe Boat Left Without You: Now What?
May
When things go wrongEmergency Planning: Why Do We Need It?Breath-hold diving: Running on reserve -Part 5 Learning to RebreatheSweet Dreams: When Can I Resume Diving Post Anaesthesia?Investing in the future of reefsTo lie or not to lie?THE STORY OF A RASH AFTER A DIVEFirst Aid KitsTaravana: Fact or Falacy?
June
Oxygen Unit MaintenanceKnow Your Oxygen-Delivery Masks 1Know Your Oxygen-Delivery Masks 2Emergency Oxygen unitsInjuries due to exposure - HypothermiaInjuries due to exposure - Altitude sicknessInjuries due to Exposure - Dehydration and other concernsHow to plan for your dive tripThe Future of Dive MedicinePlastic is Killing our ocean
September
Return to DivingDiagnoses: Pulmonary blebSide effects of Rectogesic ointmentDiving with ChemotherapyReplacing dive computers and BCDsCustomize Your First-Aid KitPlan for medical emergenciesHow the dive Reflex protects the brain and heartDry suits and skin BendsAltitude sickness and DCSScuba Diving and Life Expectancy
2017
March
April
Incident Insight: TriageA Field Guide to Minor MishapsSnorkels: Pros & ConsTime & RecoveryMedication & Drug UseDiving with CancerNitrox FAQCOPD FAQHyperbaric Chamber FAQJet Lag FAQHydration FAQAnticoagulant Medication FAQFluid in the Ear FAQEye Surgery FAQElderly Divers FAQNitrogen FAQHealth Concerns FAQMotion Sickness FAQMicronuclei FAQ
June
August
2016
February
March
Breath-Hold Diving & ScubaReturn to Diving After DCITiming Exercise & DivingHot Tubs After DivingSubcutaneous EmphysemaIn-Water RecompressionDiving at AltitudeFlying After DivingDiving After FlyingThe Risks of Diabetes & DivingFlu-like Symptoms Following a DiveHand & Foot EdemaFrontal HeadachesBladder DiscomfortLatex AllergiesRemember to BreatheProper Position for Emergency CareAches & PainsCell Phones While DrivingSurfers Ear Ear Ventilation TubesDealing with Ear ProblemsDiving with Existing Ear InjuriesPerforated Ear DrumENT SurgeryUnpluggedCochlear ImplantsPortuguese Man-of-WarJellyfish StingsLionfish, Scorpionfish & Stonefish EnvenomationsStingray Envenomation Coral Cuts, Scrapes and RashesSpeeding & Driving Behaviour
June
Newsflash! Low Pressure Hose DeteriorationItching & rash go away & come back!7 Things we did not know about the oceanMigraine HeadacheAttention Deficit Disorder Cerebral Vascular AccidentEpilepsyCerebral PalsyHistory of SeizuresMultiple Sclerosis Head TraumaBreast Cancer & Fitness to Dive IssuesLocal Allergic ReactionsSea LiceHow ocean pollution affects humans Dive Fatality & Lobster Mini-Season StatisticsPregnancy & DivingReturn to Diving After Giving BirthBreast Implants & DivingMenstruation During Diving ActivitiesOral Birth ControlBreast FeedingPremenstrual SyndromeOsteoporosisThe Aftermath of Diving IncidentsCompensation Legislation & the Recreational DiverNoise-Induced Hearing LossLegal MattersThe Nature of Liability & DivingDAN Legal NetworkWaivers, Children & Solo DivingHealthy, but overweight!Taking Medication while Scuba DivingGetting Fit for the Dive SeasonBone Considerations in Young DiversAsthma and Scuba DivingHepatitisDiving with HyperglycemiaShoulder PainDiving After Spinal Back Surgery
August
Hazard Identification & Risk AssessmentCaring For Your People Caring For Your FacilitiesCaring For Your BusinessScuba Air Quality Part 1Scuba Air Quality Part 2Chamber Maintenance Part 1Chamber Maintenance Part 2The Aging Diver Propeller SafetyRelease The PressureDon't Get LostMore Water, Less Bubbles13 Ways to Run Out of Air & How Not To7 Mistakes Divers Make & How To Avoid ThemSafety Is In The AirHow Good Is Your Emergency Plan
2015
January
March