Learning to Rebreathe

By Brian Harper
Brian Harper relates his experience of learning to use a closed -circuit rebreather and venturing into the world of technical diving.
It was dinner time at Divetech. As I walked past the kitchen, I noticed two red lights blinking on the side of the oven. Before I realised what I was doing, I had raised my hand to my mouth and tilted an imaginary switch away from my face while reciting to myself, “If you encounter a problem, bailout to open-circuit scuba” (the mantra of every recreational rebreather student).
I had not even gotten my hands on a rebreather yet, but I had been doing a lot of reading. I had studied my training manual for weeks and on the flight to Grand Cayman, I carefully read every page of the owner’s manual for the Poseidon MKVI (the rebreather I would be learning to dive during Tek Week 2012). Once I actually started my class, I learned that checking my console was a better response to a warning light, but I was still reassured by my heightened awareness.
I had been diving for 20 years, but I had yet to venture into technical diving. With the growing popularity of recreational rebreathers, though, I saw an opportunity to get a glimpse into that world.
Relearning Buoyancy Control
Apparently, in all my years as a diver, I have been using my breath to make fine adjustments to my buoyancy. I know this because on my first day as a rebreather diver my buoyancy control failed me completely. The main difference is this: When using a closed-circuit rebreather, breathing does not change the total volume of the liquid displaced in terms of Archimedes’ law, it simply moves the volume of gas back and forth between your lungs and the unit’s counterlungs (gas reservoirs). Thus, efforts to fine-tune buoyancy with well-timed inhalations led me to crash awkwardly into the bottom of the pool on several occasions.
In addition to relearning buoyancy control, I had to get over my desire to feel the familiar flood of cold, dry air that a second stage regulator delivers. I have always heard divers talk about breathing normally while open-circuit scuba diving, but breathing with a rebreather is much more like normal topside breathing than open-circuit breathing. It is so similar to normal breathing, in fact, that it felt very strange to do it underwater.
Elegant Design
A rebreather’s hoses, mouthpiece and counterlungs are known as “the loop”. The beauty of recreational rebreathers is their ability to make sure the gas in the loop is always optimised for breathability. They do this automatically by detecting the percentage of oxygen in the circulating gas, accounting for the depth and adding oxygen or air to the mix as needed. A canister of carbon dioxide (CO2) scrubber removes CO2 from the gas. All this delivers two primary benefits to recreational divers: long dive times and the quiet absence of bubbles.
Rebreathers combine stunningly complex components with very simple, yet brilliantly implemented, ones. On the complex side, the battery of the unit I used can get 30 hours out of a charge, has its own on-board computer (which stores dive-log data and decompression status separately from the unit’s main computer) and even houses LEDs and a speaker that broadcast distress signals if the computer detects any problems. On the simple side, rebreathers’ mushroom valves are a pair of thin, rubbery discs that sit within the hoses on either side of the diver’s mouth. When the diver inhales, the valve on the side of the freshly-scrubbed and properly-oxygenated gas is pulled open, while the one leading toward the scrubber is pushed closed. When you exhale, the flexible discs blow the other way. These two thin discs are all it takes to keep the air moving through the loop in the right direction.
A recreational rebreather is so thoroughly automated that I had some initial trepidation about entrusting my life to a computer, but my instructor, Georgia Hausserman (a pilot) pointed out that “you do it every time you fly”. I also appreciated the perspective offered by another grinning rebreather diver who said, “Think of it this way, who would you rather have making these calculations, Richard Pyle and Bill Stone or you?” Perhaps most reassuring was a comment made by another diver who said: “Don’t think of your rebreather’s computer as a PC; think of it as a calculator.” That worked for me; I have wanted to throw my laptop out of a window a few times, but I have never had a calculator tell me two plus two equals five.
Checklists Save Lives
Learning to use a checklist and conducting a pre-breathe test (a five-minute test breathe of a rebreather before diving) are essential parts of becoming a rebreather diver. Georgia had seen a man become hypoxic on the surface and nearly die just a few weeks before. He had failed to reconnect his oxygen after a pre-dive problem that required him to disassemble and reassemble his unit. If he had done any number of things, including starting his checklist over from the beginning, conducting a proper pre-breathe test or checking his display, he would not have come within inches of his life while trying to put on his fins in less than 1 m of water. Fortunately, bystanders noticed he was not moving, pulled him out and saved his life. The man had just been arguing that checklists do not work the previous evening at dinner.
Amazing Experiences
When I asked Georgia about her own transition into rebreather diving, she told me she was dragged kicking and screaming, but that she now dives more with her rebreather than she ever did with open-circuit scuba. When I asked her why, she said, “Because I expect to have amazing experiences.” One such experience involved a 2.4m hammerhead, which swam up behind her and passed by closely. Another involved a whitetip reef shark that circled her three times, while a second whitetip cruised in from out of nowhere to make a close pass.
I have only logged a few rebreather dives so far, but I have had some memorable interactions too. A big mutton snapper and I watched each other closely as it swam toward me, gazing intently, before veering off mere inches from my face. Early in my training, before I had figured out how to maintain the right amount of gas in my loop, I was watching some jawfish dance above their burrows. Every time I had to vent gas from the loop, they shied downward into their holes. When I managed to achieve proper loop volume and stopped making bubbles, they danced like no one was watching. I have heard some unforgettable sounds while diving with the rebreather, too. I watched a parrotfish nibble a reef for minutes on end and heard every crunch. Later, I became keenly aware of a rushing roar that seemed to come out of the heavy blueness around me as I hung above a deep pinnacle.
Also, on my last day in Cayman, I was happy to get acquainted with the wreck of the USS Kittiwake. The Kittiwake lies in the sand a short distance from the top of a wall, which plunges dramatically into untold depths. Across the sand from the wreck, situated near the top of the wall, massive coral structures rise high off the sand. Swimming along the seafloor through a narrow passage that separated two of these towering reef structures, I emerged from between them at the top of the wall. As I hung there above the void, its allure was tremendous. “So this is what all those tech divers are going on about,” I thought.
Brian Harper relates his experience of learning to use a closed -circuit rebreather and venturing into the world of technical diving.
It was dinner time at Divetech. As I walked past the kitchen, I noticed two red lights blinking on the side of the oven. Before I realised what I was doing, I had raised my hand to my mouth and tilted an imaginary switch away from my face while reciting to myself, “If you encounter a problem, bailout to open-circuit scuba” (the mantra of every recreational rebreather student).
I had not even gotten my hands on a rebreather yet, but I had been doing a lot of reading. I had studied my training manual for weeks and on the flight to Grand Cayman, I carefully read every page of the owner’s manual for the Poseidon MKVI (the rebreather I would be learning to dive during Tek Week 2012). Once I actually started my class, I learned that checking my console was a better response to a warning light, but I was still reassured by my heightened awareness.
I had been diving for 20 years, but I had yet to venture into technical diving. With the growing popularity of recreational rebreathers, though, I saw an opportunity to get a glimpse into that world.
Relearning Buoyancy Control
Apparently, in all my years as a diver, I have been using my breath to make fine adjustments to my buoyancy. I know this because on my first day as a rebreather diver my buoyancy control failed me completely. The main difference is this: When using a closed-circuit rebreather, breathing does not change the total volume of the liquid displaced in terms of Archimedes’ law, it simply moves the volume of gas back and forth between your lungs and the unit’s counterlungs (gas reservoirs). Thus, efforts to fine-tune buoyancy with well-timed inhalations led me to crash awkwardly into the bottom of the pool on several occasions.
In addition to relearning buoyancy control, I had to get over my desire to feel the familiar flood of cold, dry air that a second stage regulator delivers. I have always heard divers talk about breathing normally while open-circuit scuba diving, but breathing with a rebreather is much more like normal topside breathing than open-circuit breathing. It is so similar to normal breathing, in fact, that it felt very strange to do it underwater.
Elegant Design
A rebreather’s hoses, mouthpiece and counterlungs are known as “the loop”. The beauty of recreational rebreathers is their ability to make sure the gas in the loop is always optimised for breathability. They do this automatically by detecting the percentage of oxygen in the circulating gas, accounting for the depth and adding oxygen or air to the mix as needed. A canister of carbon dioxide (CO2) scrubber removes CO2 from the gas. All this delivers two primary benefits to recreational divers: long dive times and the quiet absence of bubbles.
Rebreathers combine stunningly complex components with very simple, yet brilliantly implemented, ones. On the complex side, the battery of the unit I used can get 30 hours out of a charge, has its own on-board computer (which stores dive-log data and decompression status separately from the unit’s main computer) and even houses LEDs and a speaker that broadcast distress signals if the computer detects any problems. On the simple side, rebreathers’ mushroom valves are a pair of thin, rubbery discs that sit within the hoses on either side of the diver’s mouth. When the diver inhales, the valve on the side of the freshly-scrubbed and properly-oxygenated gas is pulled open, while the one leading toward the scrubber is pushed closed. When you exhale, the flexible discs blow the other way. These two thin discs are all it takes to keep the air moving through the loop in the right direction.
A recreational rebreather is so thoroughly automated that I had some initial trepidation about entrusting my life to a computer, but my instructor, Georgia Hausserman (a pilot) pointed out that “you do it every time you fly”. I also appreciated the perspective offered by another grinning rebreather diver who said, “Think of it this way, who would you rather have making these calculations, Richard Pyle and Bill Stone or you?” Perhaps most reassuring was a comment made by another diver who said: “Don’t think of your rebreather’s computer as a PC; think of it as a calculator.” That worked for me; I have wanted to throw my laptop out of a window a few times, but I have never had a calculator tell me two plus two equals five.
Checklists Save Lives
Learning to use a checklist and conducting a pre-breathe test (a five-minute test breathe of a rebreather before diving) are essential parts of becoming a rebreather diver. Georgia had seen a man become hypoxic on the surface and nearly die just a few weeks before. He had failed to reconnect his oxygen after a pre-dive problem that required him to disassemble and reassemble his unit. If he had done any number of things, including starting his checklist over from the beginning, conducting a proper pre-breathe test or checking his display, he would not have come within inches of his life while trying to put on his fins in less than 1 m of water. Fortunately, bystanders noticed he was not moving, pulled him out and saved his life. The man had just been arguing that checklists do not work the previous evening at dinner.
Amazing Experiences
When I asked Georgia about her own transition into rebreather diving, she told me she was dragged kicking and screaming, but that she now dives more with her rebreather than she ever did with open-circuit scuba. When I asked her why, she said, “Because I expect to have amazing experiences.” One such experience involved a 2.4m hammerhead, which swam up behind her and passed by closely. Another involved a whitetip reef shark that circled her three times, while a second whitetip cruised in from out of nowhere to make a close pass.
I have only logged a few rebreather dives so far, but I have had some memorable interactions too. A big mutton snapper and I watched each other closely as it swam toward me, gazing intently, before veering off mere inches from my face. Early in my training, before I had figured out how to maintain the right amount of gas in my loop, I was watching some jawfish dance above their burrows. Every time I had to vent gas from the loop, they shied downward into their holes. When I managed to achieve proper loop volume and stopped making bubbles, they danced like no one was watching. I have heard some unforgettable sounds while diving with the rebreather, too. I watched a parrotfish nibble a reef for minutes on end and heard every crunch. Later, I became keenly aware of a rushing roar that seemed to come out of the heavy blueness around me as I hung above a deep pinnacle.
Also, on my last day in Cayman, I was happy to get acquainted with the wreck of the USS Kittiwake. The Kittiwake lies in the sand a short distance from the top of a wall, which plunges dramatically into untold depths. Across the sand from the wreck, situated near the top of the wall, massive coral structures rise high off the sand. Swimming along the seafloor through a narrow passage that separated two of these towering reef structures, I emerged from between them at the top of the wall. As I hung there above the void, its allure was tremendous. “So this is what all those tech divers are going on about,” I thought.
Posted in Alert Diver Fall Editions
Tagged with rebreathers, closed circuit scuba, tecnical diver, Nitrox, trimix, dri-suits
Tagged with rebreathers, closed circuit scuba, tecnical diver, Nitrox, trimix, dri-suits
Categories
2021
March
Old Habits Die HardSave a Diver, Save YourselfCylinder SafetyUndercover CrabsReef safe sunscreenPhysics, Biophysics and Decompression SicknessModels and Marine LifeSunscreen and CoralCristina Mittermeier: Commitment to ConservationDiving After a StrokeCurrent DivesThis Bites: Prevention TreatmentEnvironmental Considerations for Disinfection
2020
January
February
Group Fitness at the PoolHow to Rescue a Distressed diver at the SurfaceHow to manage Near-DrowningNo Sit-ups no problem How to manage MalariaHow to manage Oxygen Deficiency (Hypoxia)What to do when confronted by a sharkHow to manage Scombroid PoisoningHow to perform a Deep Diver RescueHow to perform One-rescuer CPRHow to perform a Neurological Assessment
March
DAN’s Quick Guide to Properly Disinfecting Dive GearCOVID-19 : Prevention Recommendations for our Diving CommunityGermophobia? - Just give it a reasonable thoughtScuba Equipment care – Rinsing and cleaning diving equipmentCOVID-19 and DAN MembershipFurther limitations imposed on travels and considerations on diving activitiesDAN Membership COVID-19 FAQsLancet COVID-19 South African Testing SitesCOVID-19 No Panic Help GuideGetting Decompression Sickness while FreedivingDown in the DumpsCardiovascular Disease and DivingDelayed Off-GassingDiving after Dental surgeryDiving with Multiple MedicationsPygmy Seahorses: Life AquaticAfrica DustCOVID-19 Myth BustersScuba Units Are Not Suitable Substitutes for VentilatorsDisinfection of Scuba Equipment and COVID-19Physioball Stability Exercises
April
COVID-19 AdvisoryScuba Equipment Care - Drying & Storing Your GearTransporting Diving Lights & BatteriesHow to Pivot Your Message During a CrisisTourism Relief FundCOVID-19 Business Support ReviewDiving After COVID-19: What We Know TodayEUBS-ECHM Position Statement on Diving ActivitiesPart 2: COVID-19 Business Support ReviewPress Release
May
Diving in the Era of COVID-19Dive Operations and COVID-19: Prepping for ReturnCOVID-19 & Diving Activities: 10 Safety RecommendationsCOVID-19: Surface Survival TimesThe Philippines at its FinestThe Logistics of ExplorationThe Art of the Underwater SelfieShooter: Douglas SeifertFAQs Answered: Disinfecting Scuba EquipmentStock your First-Aid KitResearch and OutreachCovid-19 ResearchOut of the BlueEffects of Aspirin on DivingThe New Pointy end of DivingDiving and Hepatitis CCaissons, Compressed-Air work and Deep TunnellingPreparing to Dive in the New NormalNew Health Declaration Form Sample Addressing C-19 IssuesDiving After COVID 19: What Divers Need to Know
June
Travel Smarter: PRE-TRIP VACCINATIONSAttention-Deficit/Hyperactivity Disorder and DivingCOVID-19: Updated First Aid Training Recommendations From DANDiving with a Purpose in National Marine SanctuariesStay Positive Through the PandemicFor the Dive Operator: How to Protect Your Staff & ClientsStudying Deep reefs and Deep diversAsking the Right QuestionsLung squeeze under cold diving conditions
July
Dive DeprivationVolunteer Fish Surveys: Engage DiversDAN Member Profile: Mehgan Heaney-GrierTravel Smarter: Don’t Cancel, Reschedule InsteadDive Boat Fire SafetyRay of HopePartner ExercisesDiving at AltitudeAluminium ExposureHip FracturesAcoustic NeuromaGuidelines for Lifelong Medical Fitness to DiveNew Dive Medical Forms
August
Women in Diving: Lauren Arthur, Conservationist & Natural History Story TellerWomen in Diving: Dr Sara Andreotti White Shark ResearcherTiming ExerciseWomen in Diving: The Salty Wanderer, Charlie WarlandWomen in Diving: Beth Neale, Aqua soul of freedivingWomen in Diving: Diving and spearfishing Diva, Jean HattinghWomen in Diving: Zandile Ndhlovu, The Black Mermaid
September
October
Freediving For ScienceStep Exercises with CardioFluorescence Imaging help Identify Coral BleachingChildren and DivingThe Watchman device and divingScuba Diving and Factor V Leiden gene mutationNitrogen Narcosis at shallow depthsOil and Particulates: Safe levels in Breathing Air at depthDive Principles for Coping with COVID-19The Importance of a Predive Safety CheckTalya Davidoff: the 'Plattelandse Meisie' Freediver
2019
February
April
May
DAN Press ReleaseYour Dive Computer: Tips and tricks - PART 1Your Dive Computer: Tips and tricks - PART 2Aural HygieneDCS AheadHow Divers Can Help with coral conservationRed Tide and shellfish poisoningDiving after Kidney DonationDiving with hypertrophic cardiomyopathyEmergency Underwater Oxygen Recompression
June
July
September
October
November
Exercise drills with DowelsHeart-rate TrainingCultivating ConservationTRavel Smarter : Evaluating an unfamiliar Dive operatorChallenging the Frontiers of Decompression ResearchTravel Smarter: Plan for Medical EmergenciesWhen should I call my Doctor?DAN Student Medical Expense CoverageAdvice, Support and a LifelineWetsuits and heat stressDiving after Chiropractic adjustments
2018
April
Flying after pool diving FAQLung squeeze while freediving FAQDiving after Bariatric surgery FAQMarine injuries FAQVasovagal Syncope unpredictable FAQIncident report procedure FAQDiving after knee surgery FAQDiving when in RemissionDive with orbital Implant FAQInert gas washout FAQOxygen ears FAQPost Decompression sicknessChildren and diving. The real concerns.Diving after SurgeryPhysiology of Decompresssion sickness FAQDiving and regular exerciseGordon Hiles - I am an Underwater Cameraman and Film MakerScuba Air QualityBreath-hold diving. Part 3: The Science Bit!Compensation Legislation and the Recreational DiverCape Town DivingFive pro tips for capturing better images in cold waterThe Boat Left Without You: Now What?
May
When things go wrongEmergency Planning: Why Do We Need It?Breath-hold diving: Running on reserve -Part 5 Learning to RebreatheSweet Dreams: When Can I Resume Diving Post Anaesthesia?Investing in the future of reefsTo lie or not to lie?THE STORY OF A RASH AFTER A DIVEFirst Aid KitsTaravana: Fact or Falacy?
June
Oxygen Unit MaintenanceKnow Your Oxygen-Delivery Masks 1Know Your Oxygen-Delivery Masks 2Emergency Oxygen unitsInjuries due to exposure - HypothermiaInjuries due to exposure - Altitude sicknessInjuries due to Exposure - Dehydration and other concernsHow to plan for your dive tripThe Future of Dive MedicinePlastic is Killing our ocean
September
Return to DivingDiagnoses: Pulmonary blebSide effects of Rectogesic ointmentDiving with ChemotherapyReplacing dive computers and BCDsCustomize Your First-Aid KitPlan for medical emergenciesHow the dive Reflex protects the brain and heartDry suits and skin BendsAltitude sickness and DCSScuba Diving and Life Expectancy
2017
March
April
Incident Insight: TriageA Field Guide to Minor MishapsSnorkels: Pros & ConsTime & RecoveryMedication & Drug UseDiving with CancerNitrox FAQCOPD FAQHyperbaric Chamber FAQJet Lag FAQHydration FAQAnticoagulant Medication FAQFluid in the Ear FAQEye Surgery FAQElderly Divers FAQNitrogen FAQHealth Concerns FAQMotion Sickness FAQMicronuclei FAQ
June
August
2016
February
March
Breath-Hold Diving & ScubaReturn to Diving After DCITiming Exercise & DivingHot Tubs After DivingSubcutaneous EmphysemaIn-Water RecompressionDiving at AltitudeFlying After DivingDiving After FlyingThe Risks of Diabetes & DivingFlu-like Symptoms Following a DiveHand & Foot EdemaFrontal HeadachesBladder DiscomfortLatex AllergiesRemember to BreatheProper Position for Emergency CareAches & PainsCell Phones While DrivingSurfers Ear Ear Ventilation TubesDealing with Ear ProblemsDiving with Existing Ear InjuriesPerforated Ear DrumENT SurgeryUnpluggedCochlear ImplantsPortuguese Man-of-WarJellyfish StingsLionfish, Scorpionfish & Stonefish EnvenomationsStingray Envenomation Coral Cuts, Scrapes and RashesSpeeding & Driving Behaviour
June
Newsflash! Low Pressure Hose DeteriorationItching & rash go away & come back!7 Things we did not know about the oceanMigraine HeadacheAttention Deficit Disorder Cerebral Vascular AccidentEpilepsyCerebral PalsyHistory of SeizuresMultiple Sclerosis Head TraumaBreast Cancer & Fitness to Dive IssuesLocal Allergic ReactionsSea LiceHow ocean pollution affects humans Dive Fatality & Lobster Mini-Season StatisticsPregnancy & DivingReturn to Diving After Giving BirthBreast Implants & DivingMenstruation During Diving ActivitiesOral Birth ControlBreast FeedingPremenstrual SyndromeOsteoporosisThe Aftermath of Diving IncidentsCompensation Legislation & the Recreational DiverNoise-Induced Hearing LossLegal MattersThe Nature of Liability & DivingDAN Legal NetworkWaivers, Children & Solo DivingHealthy, but overweight!Taking Medication while Scuba DivingGetting Fit for the Dive SeasonBone Considerations in Young DiversAsthma and Scuba DivingHepatitisDiving with HyperglycemiaShoulder PainDiving After Spinal Back Surgery
August
Hazard Identification & Risk AssessmentCaring For Your People Caring For Your FacilitiesCaring For Your BusinessScuba Air Quality Part 1Scuba Air Quality Part 2Chamber Maintenance Part 1Chamber Maintenance Part 2The Aging Diver Propeller SafetyRelease The PressureDon't Get LostMore Water, Less Bubbles13 Ways to Run Out of Air & How Not To7 Mistakes Divers Make & How To Avoid ThemSafety Is In The AirHow Good Is Your Emergency Plan
2015
January
March