Flying after pool diving FAQ

Flying after pool diving

DAN medics and researchers answer your questions about dive medicine.

I’m a dive instructor, and I occasionally have student divers who wonder if they need to follow the flying-after-diving recommendations after just being in the pool.

Flying or travel to altitude after diving is a consideration for many divers, so it is great that the question is being asked. Fortunately, a typical shallow, low-workload, pool-diving exposure would be of minimal concern, particularly when the time is split between the bottom and the surface and the cumulative total underwater time is modest. This is a great opportunity, however, to reinforce an understanding of dive tables.
You can reference the U.S. Navy Diving Manual (USN 2008) for this guidance. An actual bottom time (the time from leaving the surface to the point of direct ascent to a stop depth or the surface) of 61-88 minutes at 15 feet of seawater (fsw) would put a diver in repetitive group C (Table 9-7). C is the maximum repetitive group allowed for immediate exposure to an altitude of 8,000 feet (Table 9-6). A maximum depth of 10 fsw would require an actual bottom time of 102-158 minutes to put a diver in repetitive group C.
Any delay between exiting the water and travel to altitude would provide an additional safety buffer as the diver offgases. Conversely, deeper dive depths, high underwater workloads and/or travel to higher altitudes would require greater conservatism.
Practically speaking, a 60-minute pool session in a 10- to 12-foot-deep pool would offer little concern for typical pressurized aircraft cabin altitudes (usually 6,000-8,000 feet altitude equivalent) or unpressurized flight or driving to a similar actual altitude. Following the flying-after-diving guidelines recommended for recreational diving would not be necessary for this (or lesser) exposure.
For completeness, the flying-after-diving guidelines for recreational diving call for a minimum 12-hour surface interval (SI) after single no-decompression dives, an 18-hour SI after multiple dives per day or multiple consecutive days of diving, and a “substantially longer” than 18-hour SI after decompression dives (Sheffield and Vann 2004). The “substantially longer” text was used to acknowledge the fact that we did not have sufficient data for precise recommendations, but it is a common rule of thumb that a 24-hour SI is desirable for decompression dives.
The DAN® flying-after-diving guidelines are applied to the altitude range of 2,000-8,000 feet. Exposures to altitudes below this range are ignored, and exposures to greater altitudes are not recommended after diving until all excess inert gas is eliminated. In comparison, the U.S. Navy uses 1,000 feet as the threshold for altitude exposure. An interesting fact is that the U.S. Navy tables rely on most of the same data used to generate the DAN guidelines. The specific guidance for different exposure profiles is primarily based on mathematical manipulation of the same data, not additional experimental data.
— Neal W. Pollock, Ph.D.
References
Sheffield P, Vann RD, eds. DAN Flying After Diving Workshop Proceedings. Durham, NC: Divers Alert Network, 2004.
U.S. Navy Diving Manual, Volume 2, Revision 6. NAVSEA 0910-LP-106-0957. Washington, DC: Naval Sea Systems Command, 2008: Chapter 9.

Categories

 2019
 2018
 2016
After anaesthesia Air Quality Air exchange centre Air hose failure Altitude changes Altitude sickness Ama divers Anaerobic Metabolism Annual renewal Apnea Apnoea Arterial gas embolism Arthroscopic surgery Aurel hygiene BCD Badages Bag valve mask Bandaids Barbell back squat Bench press Blood flow Bouyancy compensators Boyle's Law Boyle\'s Law Bradycardia Brain Breast Cancer Breath Hold Diving Breath hold Breath-hold Breathing Gas Breathing Bruising Buoyancy Burnshield CGASA CMAS CO2 Cabin pressure Camera settings Cancer Remission Cancer treatments Cancer Cannabis and diving Cannabis Cape Town Dive Festival Carbon dioxide Cardio health Cardiomyopathy Chamber Safety Charles' Law Charles\' Law Charles\\\' Law Charles\\\\\\\' Law Charles\\\\\\\\\\\\\\\' Law Chemotherapy Cleaning products Coastalexcursion Cold Water Cold care Cold Compressed gas Conservation Contaminants Contaminated air Corals Courtactions Crohns disease Crystal build up Crystallizing hoses Cutaneous decompression DAN Courses DAN Profile DAN Researchers DAN medics DAN report DCI DCS Decompressions sickness DCS DM training DReams Dalton's Law Dalton\'s Law Dalton\\\'s Law Dalton\\\\\\\'s Law Dalton\\\\\\\\\\\\\\\'s Law Deco dives Decompression Illness Decompression Sickness Decompression illsnes Decompression treatment Decompression Diaphragms Diseases Dive Chamber Dive Industry Dive Instruction Dive Instructor Dive Pros Dive Research Dive Training Dive accidents Dive buddies Dive computers Dive gear Dive health Dive medicines Dive medicine Dive safety Dive staff Diveleader training Diveleaders Diver Profile Divers Alert Diving Kids Diving career Diving emergencies Diving guidelines Diving injuries Diving suspended Diving Domestic Donation Dr Rob Schneider Drysuit diving Drysuit valves Drysuits EAPs EAP Ear pressure Ear wax Ears injuries Education Emergency action planning Emergency decompression Emergency plans Emergency underwater Oxygen Recompression Emergency Enviromental Protection Environmental factors Environmental impact Environmental managment Equipment care Evacuation Exercise Extended divetime Extinguisher Extreme treatments Eye injuries FAQ Failures Fatigue Faulty equipment Fire Coral Fire Safety Firefighting First Aid Equipment First Aid Training First Aid kits Fish Fitness Flying Francois Burman Free diving Free flow Freedive Training Freediver Freediving performance Gas Density Gas laws Gas mixes GasPerformance Gases Gastric bypass Gear Servicing Gordon Hiles HELP HIRA Haemorhoid treatment Hazard Description Hazardous Marine life Health practitioner Heart Health Heart Helium High temperatures Hot Humans Hydrate Hydrogen Hydroids Hydrostatic pressure Hyperbaric Chamber Hyperbaric research Hypothermia Immine systems In Water Recompression Indemnity form Indian Ocean Inert gas Infections Instinct Instructors Insurance Integrated Physiology International travel International Irritation Kidneys Kids scubadiver Labour laws Legal advice Legislation Leukemis Liability Risks Liability releases Liability Life expectancy Lifestyle Low blood pressure Low pressure deterioration Low volume masks Lung function Lung injuries Lung MOD Maintenance Mammalian Dive Response Mammalian effect Master scuba diver Maximum operating depth Medical Q Medical questionaire Medical statement Middle ear pressure Mike Bartick Military front press Mixed Gas Mono Fins Mooring lines More pressure Muscle pain Mycobacterium marinum Nautilus Nitrogen build up Nitrox No-decompression Non-rebreather Mask Normal Air Nosebleeds O2 providers O2 servicing OOxygen maintenance Ocean pollution Orbital implants Oronasal mask Oxygen Cylinder Oxygen Units Oxygen deficit Oxygen deicit Oxygen ears Oxygen equipment Oxygen masks Oxygen supply Oxygen therapy Oxygen P J Prinsloo PFI PJP Tech Part 3 Photography Pistons Planning Plastic Pneumothorax Pollution Pool Diving Preparation Prepared diver Press Release Professional rights Provider course Pulmanologist Pulmonary Bleb Purge RAID South Africa RCAP Radio communications Rashes Recompression chamber Recompression Recycle Regulator failure Regulators Regulator Remote areas Renewable Report incidents Rescue training Resume diving Risk Assessments Risk assesments Risk elements Risk management SABS 019 Safety Stop Safety Saturation Diving Save our seas Science Scuba Air Quality Scuba Injury Scuba children Scuba dive Scuba health Scubalearners Sealife Skin Bends Skin outbreak Skin rash Snorkeling Snorkels Sodwana Bay Splits Squeezes Standars Supplemental oxygen Surgeries Surgery Tattoes Technical Diving The Bends The truth Thermal Notions Tides Tips and trick Transplants Travel tips Travel Tweezers Unconsciousness Underwater photographer Underwater pho Vaccines Vagus nerve Valsalva manoeuvers Vape Vaping Vasvagal Syncope Venting Volatile fuels Washout treatments Wastewater Water Weakness Wetsuit fitting White balance Winter Woman in diving Work of Breathing Wound dressings Wreck dive Wreckdiving Youth diver abrasion air-cushioned alert diver altitude anemia antibiotics antiseptics bandages bent-over barbell rows body art breathing air calories burn cardiovascular checklist chemo port child clearances closed circuit scuba currents cuts dead lift decompression algorithms decongestants dehydration dive injuries dive medicing dive ready child dive reflex dive tribe diver rescue diver training dive diving attraction doctors domestic travel dri-suits dry mucous membranes dry suits dry e-cigarettes ear spaces elearning electrolyte imbalance electroytes emergency action plans emergency assessment equalizing exposure injuries eyes fEMAL DIVERS fire rescue flexible tubing frediving gas bubble health hospital humidity immersion pulmonary edema (IPE join DAN knee longevity lower stress marine pathogens medical issues medical procedures medical risk assesment mental challenge minor illness mucous membranes nasal steroids nasal nematocysts newdivers nitrogen bubbles off-gassed operating theatre operations orthopeadic outgas pain perforation phillippines physical challenges pinched nerves plasters polyester-TPU polyether-TPU post dive preserve prevention rebreather mask rebreathers retinal detachment risk areas safety stops saturation scissors scuba equipment scuba single use sinus infections smoking snorkeling. spearfishing stings strength sub-aquatic swimmers ears tattoo care tecnical diver thermal protection training trimix unified standards vision impaired warmers water quality