Newsflash! Low Pressure Hose Deterioration

DAN has learned of at least 8 or more recent cases of failure in regulators arising from the build-up of crystals in the second stage hose, where these are constructed using a polymer-braided structure. We intend to publish a more in depth account of this in the Alert Diver Magazine, written by Francois Burman, a professional engineer on the DAN staff, but this safety-related issue needs to be brought to the more urgent attention of both divers and diving equipment service providers.
Invisible Crystals
By Francois Burman, Pr. Eng, MSc
Crystallized nylon-hose interiors can cause regulator failures. Polymorphic crystallization inside hoses has recently emerged as a hazard divers should be aware of.
Scuba equipment failure or malfunction is a relatively rare factor in diving-related accidents and fatalities. When it does occur, the most common and hazardous malfunctions involve regulators and buoyancy compensator (BC) power inflators.1 Thus, a recent report to DAN® of a regulator failure was not necessarily surprising, but the cause in this particular case turned out to be quite unusual.
Although the diver involved in the incident managed the situation very well, and no one was harmed, an inexperienced or nervous diver might not have been so fortunate. It was particularly strange that although the diver's cylinder was not empty, the gas flow had slowed and then ceased in a way that resembled an out-of-air situation. Closer examination of the equipment led to a puzzling discovery: A large amount of yellow crystallized material was blocking the inside of the braided second-stage regulator hose. The hose had been in use for a few years but showed no external abnormalities or signs of deterioration.
While trying to solve the mystery, we discovered this was not an isolated case. The same situation occurred July 22, 2015, and was reported subsequently in a technical diving blog.2 Further reports from a hose manufacturer and at least one equipment-servicing workshop in a popular diving region revealed that these were not isolated events. Although no injuries have been reported, the discovery prompted a wider, global investigation, which is ongoing.
Analysis revealed the culprit to be a form of polymorphic crystallization — a phenomenon associated with cyclical heating and cooling at oil-water interfaces.3 In both incidents, the crystallization seemed to be related to the molecular structure of the internal tube. The current theory is that repeated cyclical heating and cooling of the hose lining promotes this form of crystallization in materials either unsuitable for this application or affected by certain chemicals or bacteria. The sun heats the hose, then the flow of breathing gas cools down the internal surface of the hose again. This process recurs with each dive, and the crystals grow and accumulate over time. Enough crystals eventually form to encroach on the gas flow, or they migrate toward the second-stage regulator, resulting in significant failure of the breathing device.
So far the reported incidents have been in tropical climates with gear that is several years old. We have not received reports of this problem with vinyl hoses, and given the number of braided hoses out there (both as original components and replacement parts) the incidence is likely quite small. But because this hazard threatens divers' air supplies, it is of great potential interest to the dive community. The challenge is determining how best to respond to this discovery. It's important to identify what divers need to know right now as well as what precautionary maintenance guidelines and early detection strategies they should implement at this stage.
The standard safety recommendation regarding regulator hoses has been that they should be inspected regularly for signs of external deterioration. Disintegration or abrasion of the outer rubber coating eventually predisposes hoses to rupture during pressurization or even when in use. Rubber hoses are quite prone to this condition, which is why polymer-braided hoses were developed. But herein lies the problem: The outside of braided hoses can appear normal, flexible and free from obvious abnormalities, while a deteriorated internal surface would be completely invisible to a cursory external inspection.
It would be premature to speculate that this deterioration is limited to braided hoses. Previously, hoses comprised a rubber inner hose, a single braid layer for reinforcement and finally a rubber outer sealing layer. Today the rubber inner hose is sometimes replaced with a polyurethane or nylon hose (referred to as thermoplastic). The middle or reinforcing layer is a polymer-filament braid, and the outer layer is either a second braid — which has the advantage of indicating when the inner hose has a leak — or a polyurethane or synthetic-rubber sealing layer.
Newer second-stage hoses with a thermoplastic inner layer may be vulnerable to degradation. This risk does not apply to internal layers of synthetic rubber, which appear to be impervious to this phenomenon. DAN Research would normally wish to conduct more in-depth analysis with a wider sample of defective hoses, but because this is a potential hazard to regulator function we prefer to err on the side of caution and report this phenomenon now.
What Does DAN Recommend?
DAN has contacted manufacturers of outer braided hoses to assess possible causes and precautionary measures, and we feel it is important to advise divers as follows:
By Francois Burman, Pr. Eng, MSc
Crystallized nylon-hose interiors can cause regulator failures. Polymorphic crystallization inside hoses has recently emerged as a hazard divers should be aware of.
Scuba equipment failure or malfunction is a relatively rare factor in diving-related accidents and fatalities. When it does occur, the most common and hazardous malfunctions involve regulators and buoyancy compensator (BC) power inflators.1 Thus, a recent report to DAN® of a regulator failure was not necessarily surprising, but the cause in this particular case turned out to be quite unusual.
Although the diver involved in the incident managed the situation very well, and no one was harmed, an inexperienced or nervous diver might not have been so fortunate. It was particularly strange that although the diver's cylinder was not empty, the gas flow had slowed and then ceased in a way that resembled an out-of-air situation. Closer examination of the equipment led to a puzzling discovery: A large amount of yellow crystallized material was blocking the inside of the braided second-stage regulator hose. The hose had been in use for a few years but showed no external abnormalities or signs of deterioration.
While trying to solve the mystery, we discovered this was not an isolated case. The same situation occurred July 22, 2015, and was reported subsequently in a technical diving blog.2 Further reports from a hose manufacturer and at least one equipment-servicing workshop in a popular diving region revealed that these were not isolated events. Although no injuries have been reported, the discovery prompted a wider, global investigation, which is ongoing.
Analysis revealed the culprit to be a form of polymorphic crystallization — a phenomenon associated with cyclical heating and cooling at oil-water interfaces.3 In both incidents, the crystallization seemed to be related to the molecular structure of the internal tube. The current theory is that repeated cyclical heating and cooling of the hose lining promotes this form of crystallization in materials either unsuitable for this application or affected by certain chemicals or bacteria. The sun heats the hose, then the flow of breathing gas cools down the internal surface of the hose again. This process recurs with each dive, and the crystals grow and accumulate over time. Enough crystals eventually form to encroach on the gas flow, or they migrate toward the second-stage regulator, resulting in significant failure of the breathing device.
So far the reported incidents have been in tropical climates with gear that is several years old. We have not received reports of this problem with vinyl hoses, and given the number of braided hoses out there (both as original components and replacement parts) the incidence is likely quite small. But because this hazard threatens divers' air supplies, it is of great potential interest to the dive community. The challenge is determining how best to respond to this discovery. It's important to identify what divers need to know right now as well as what precautionary maintenance guidelines and early detection strategies they should implement at this stage.
The standard safety recommendation regarding regulator hoses has been that they should be inspected regularly for signs of external deterioration. Disintegration or abrasion of the outer rubber coating eventually predisposes hoses to rupture during pressurization or even when in use. Rubber hoses are quite prone to this condition, which is why polymer-braided hoses were developed. But herein lies the problem: The outside of braided hoses can appear normal, flexible and free from obvious abnormalities, while a deteriorated internal surface would be completely invisible to a cursory external inspection.
It would be premature to speculate that this deterioration is limited to braided hoses. Previously, hoses comprised a rubber inner hose, a single braid layer for reinforcement and finally a rubber outer sealing layer. Today the rubber inner hose is sometimes replaced with a polyurethane or nylon hose (referred to as thermoplastic). The middle or reinforcing layer is a polymer-filament braid, and the outer layer is either a second braid — which has the advantage of indicating when the inner hose has a leak — or a polyurethane or synthetic-rubber sealing layer.
Newer second-stage hoses with a thermoplastic inner layer may be vulnerable to degradation. This risk does not apply to internal layers of synthetic rubber, which appear to be impervious to this phenomenon. DAN Research would normally wish to conduct more in-depth analysis with a wider sample of defective hoses, but because this is a potential hazard to regulator function we prefer to err on the side of caution and report this phenomenon now.
What Does DAN Recommend?
DAN has contacted manufacturers of outer braided hoses to assess possible causes and precautionary measures, and we feel it is important to advise divers as follows:
- All regulator hoses, including braided hoses, have a limited service-life – irrespective of the external appearance, or the reinforcement and protection provided by hose protectors or the braiding itself. Prior to 2010, the stated service life of 5 years or 500 dives for braided hoses appears to be inaccurate; failures have occurred in hoses with less than 4 years of in-service life. After this date, the manufacturers appear to have made satisfactory changes.
- The inside lining of all hoses appears to be uniquely prone to degradation in the form of 'crystallisation’, especially in hot, tropical locations. This is a gradual process, reportedly especially active in the range of 27° - 32°C, but the disruption of gas-flow and regulator function is unpredictable and invisible to external inspection.
- Any sign of gas-flow restriction in the regulator assembly should prompt careful inspection of the regulator and the hose. If the regulator is not the cause, suspect the hose.
- A physical examination including squeezing the hose every couple of inches to assess whether the hoses exhibits the same degree of flex should indicate if all is well. Any indication of a change in the resistance.
- Make all divers aware of this problem and the need for regular equipment servicing.
- Practice emergency alternative gas source sharing procedures to ensure preparedness and appropriate action in the event of regulator failure as well as out-of-gas situations.
- Be aware of what you buy - ensure that any hose purchased clearly shows information on the manufacturer, the production date and the standard used on the ends, and check that this information is consistent with the packaging.
We invite all divers who experience this inner-hose degradation to please contact DAN (info@dansa.org), preferably with pictures showing the condition of the inner hose. This will enable us to capture as much real information as possible, so that we can learn more about this phenomenon. Any new findings, cautions or advice will be shared with the diving community.
Posted in Dive Safety Tips
Tagged with Air hose failure, Crystal build up, Regulator failure, Low pressure deterioration, Francois Burman
Tagged with Air hose failure, Crystal build up, Regulator failure, Low pressure deterioration, Francois Burman
Categories
2020
January
February
Group Fitness at the PoolHow to Rescue a Distressed diver at the SurfaceHow to manage Near-DrowningNo Sit-ups no problem How to manage MalariaHow to manage Oxygen Deficiency (Hypoxia)What to do when confronted by a sharkHow to manage Scombroid PoisoningHow to perform a Deep Diver RescueHow to perform One-rescuer CPRHow to perform a Neurological Assessment
March
DAN’s Quick Guide to Properly Disinfecting Dive GearCOVID-19 : Prevention Recommendations for our Diving CommunityGermophobia? - Just give it a reasonable thoughtScuba Equipment care – Rinsing and cleaning diving equipmentCOVID-19 and DAN MembershipFurther limitations imposed on travels and considerations on diving activitiesDAN Membership COVID-19 FAQsLancet COVID-19 South African Testing SitesCOVID-19 No Panic Help GuideGetting Decompression Sickness while FreedivingDown in the DumpsCardiovascular Disease and DivingDelayed Off-GassingDiving after Dental surgeryDiving with Multiple MedicationsPygmy Seahorses: Life AquaticAfrica DustCOVID-19 Myth BustersScuba Units Are Not Suitable Substitutes for VentilatorsDisinfection of Scuba Equipment and COVID-19Physioball Stability Exercises
April
COVID-19 AdvisoryScuba Equipment Care - Drying & Storing Your GearTransporting Diving Lights & BatteriesHow to Pivot Your Message During a CrisisTourism Relief FundCOVID-19 Business Support ReviewDiving After COVID-19: What We Know TodayEUBS-ECHM Position Statement on Diving ActivitiesPart 2: COVID-19 Business Support ReviewPress Release
May
Diving in the Era of COVID-19Dive Operations and COVID-19: Prepping for ReturnCOVID-19 & Diving Activities: 10 Safety RecommendationsCOVID-19: Surface Survival TimesThe Philippines at its FinestThe Logistics of ExplorationThe Art of the Underwater SelfieShooter: Douglas SeifertFAQs Answered: Disinfecting Scuba EquipmentStock your First-Aid KitResearch and OutreachCovid-19 ResearchOut of the BlueEffects of Aspirin on DivingThe New Pointy end of DivingDiving and Hepatitis CCaissons, Compressed-Air work and Deep TunnellingPreparing to Dive in the New NormalNew Health Declaration Form Sample Addressing C-19 IssuesDiving After COVID 19: What Divers Need to Know
June
Travel Smarter: PRE-TRIP VACCINATIONSAttention-Deficit/Hyperactivity Disorder and DivingCOVID-19: Updated First Aid Training Recommendations From DANDiving with a Purpose in National Marine SanctuariesStay Positive Through the PandemicFor the Dive Operator: How to Protect Your Staff & ClientsStudying Deep reefs and Deep diversAsking the Right QuestionsLung squeeze under cold diving conditions
July
Dive DeprivationVolunteer Fish Surveys: Engage DiversDAN Member Profile: Mehgan Heaney-GrierTravel Smarter: Don’t Cancel, Reschedule InsteadDive Boat Fire SafetyRay of HopePartner ExercisesDiving at AltitudeAluminium ExposureHip FracturesAcoustic NeuromaGuidelines for Lifelong Medical Fitness to DiveNew Dive Medical Forms
August
Women in Diving: Lauren Arthur, Conservationist & Natural History Story TellerWomen in Diving: Dr Sara Andreotti White Shark ResearcherTiming ExerciseWomen in Diving: The Salty Wanderer, Charlie WarlandWomen in Diving: Beth Neale, Aqua soul of freedivingWomen in Diving: Diving and spearfishing Diva, Jean HattinghWomen in Diving: Zandile Ndhlovu, The Black Mermaid
September
October
Freediving For ScienceStep Exercises with CardioFluorescence Imaging help Identify Coral BleachingChildren and DivingThe Watchman device and divingScuba Diving and Factor V Leiden gene mutationNitrogen Narcosis at shallow depthsOil and Particulates: Safe levels in Breathing Air at depthDive Principles for Coping with COVID-19The Importance of a Predive Safety CheckTalya Davidoff: the 'Plattelandse Meisie' Freediver
2019
February
April
May
DAN Press ReleaseYour Dive Computer: Tips and tricks - PART 1Your Dive Computer: Tips and tricks - PART 2Aural HygieneDCS AheadHow Divers Can Help with coral conservationRed Tide and shellfish poisoningDiving after Kidney DonationDiving with hypertrophic cardiomyopathyEmergency Underwater Oxygen Recompression
June
July
September
October
November
Exercise drills with DowelsHeart-rate TrainingCultivating ConservationTRavel Smarter : Evaluating an unfamiliar Dive operatorChallenging the Frontiers of Decompression ResearchTravel Smarter: Plan for Medical EmergenciesWhen should I call my Doctor?DAN Student Medical Expense CoverageAdvice, Support and a LifelineWetsuits and heat stressDiving after Chiropractic adjustments
2018
April
Flying after pool diving FAQLung squeeze while freediving FAQDiving after Bariatric surgery FAQMarine injuries FAQVasovagal Syncope unpredictable FAQIncident report procedure FAQDiving after knee surgery FAQDiving when in RemissionDive with orbital Implant FAQInert gas washout FAQOxygen ears FAQPost Decompression sicknessChildren and diving. The real concerns.Diving after SurgeryPhysiology of Decompresssion sickness FAQDiving and regular exerciseGordon Hiles - I am an Underwater Cameraman and Film MakerScuba Air QualityBreath-hold diving. Part 3: The Science Bit!Compensation Legislation and the Recreational DiverCape Town DivingFive pro tips for capturing better images in cold waterThe Boat Left Without You: Now What?
May
When things go wrongEmergency Planning: Why Do We Need It?Breath-hold diving: Running on reserve -Part 5 Learning to RebreatheSweet Dreams: When Can I Resume Diving Post Anaesthesia?Investing in the future of reefsTo lie or not to lie?THE STORY OF A RASH AFTER A DIVEFirst Aid KitsTaravana: Fact or Falacy?
June
Oxygen Unit MaintenanceKnow Your Oxygen-Delivery Masks 1Know Your Oxygen-Delivery Masks 2Emergency Oxygen unitsInjuries due to exposure - HypothermiaInjuries due to exposure - Altitude sicknessInjuries due to Exposure - Dehydration and other concernsHow to plan for your dive tripThe Future of Dive MedicinePlastic is Killing our ocean
September
Return to DivingDiagnoses: Pulmonary blebSide effects of Rectogesic ointmentDiving with ChemotherapyReplacing dive computers and BCDsCustomize Your First-Aid KitPlan for medical emergenciesHow the dive Reflex protects the brain and heartDry suits and skin BendsAltitude sickness and DCSScuba Diving and Life Expectancy
2017
March
April
Incident Insight: TriageA Field Guide to Minor MishapsSnorkels: Pros & ConsTime & RecoveryMedication & Drug UseDiving with CancerNitrox FAQCOPD FAQHyperbaric Chamber FAQJet Lag FAQHydration FAQAnticoagulant Medication FAQFluid in the Ear FAQEye Surgery FAQElderly Divers FAQNitrogen FAQHealth Concerns FAQMotion Sickness FAQMicronuclei FAQ
June
August
2016
February
March
Breath-Hold Diving & ScubaReturn to Diving After DCITiming Exercise & DivingHot Tubs After DivingSubcutaneous EmphysemaIn-Water RecompressionDiving at AltitudeFlying After DivingDiving After FlyingThe Risks of Diabetes & DivingFlu-like Symptoms Following a DiveHand & Foot EdemaFrontal HeadachesBladder DiscomfortLatex AllergiesRemember to BreatheProper Position for Emergency CareAches & PainsCell Phones While DrivingSurfers Ear Ear Ventilation TubesDealing with Ear ProblemsDiving with Existing Ear InjuriesPerforated Ear DrumENT SurgeryUnpluggedCochlear ImplantsPortuguese Man-of-WarJellyfish StingsLionfish, Scorpionfish & Stonefish EnvenomationsStingray Envenomation Coral Cuts, Scrapes and RashesSpeeding & Driving Behaviour
June
Newsflash! Low Pressure Hose DeteriorationItching & rash go away & come back!7 Things we did not know about the oceanMigraine HeadacheAttention Deficit Disorder Cerebral Vascular AccidentEpilepsyCerebral PalsyHistory of SeizuresMultiple Sclerosis Head TraumaBreast Cancer & Fitness to Dive IssuesLocal Allergic ReactionsSea LiceHow ocean pollution affects humans Dive Fatality & Lobster Mini-Season StatisticsPregnancy & DivingReturn to Diving After Giving BirthBreast Implants & DivingMenstruation During Diving ActivitiesOral Birth ControlBreast FeedingPremenstrual SyndromeOsteoporosisThe Aftermath of Diving IncidentsCompensation Legislation & the Recreational DiverNoise-Induced Hearing LossLegal MattersThe Nature of Liability & DivingDAN Legal NetworkWaivers, Children & Solo DivingHealthy, but overweight!Taking Medication while Scuba DivingGetting Fit for the Dive SeasonBone Considerations in Young DiversAsthma and Scuba DivingHepatitisDiving with HyperglycemiaShoulder PainDiving After Spinal Back Surgery
August
Hazard Identification & Risk AssessmentCaring For Your People Caring For Your FacilitiesCaring For Your BusinessScuba Air Quality Part 1Scuba Air Quality Part 2Chamber Maintenance Part 1Chamber Maintenance Part 2The Aging Diver Propeller SafetyRelease The PressureDon't Get LostMore Water, Less Bubbles13 Ways to Run Out of Air & How Not To7 Mistakes Divers Make & How To Avoid ThemSafety Is In The AirHow Good Is Your Emergency Plan
2015
January
March
6 Comments
Originally brought to light in 2015 (see link)... this issue has been reported by many scuba divers. http://scubatechphilippines.com/scuba_blog/regulator-hose-diving-emergency/
Can anyone comment on the brand of hose, number of dives, diving air or EANx? Were these rental gear used every day or did they sit in someone's closet most of the time?
I had a complete shutdown of airflow in January 2015 at 140 ft with a braided hose. The hose was stamped 2008, used daily for about 4 years in Cozumel.
The DAN Alert Diver article titled 'Air Hoses: A Closer Look' has triggered some inquiries regarding material used in the construction of double braided flex hoses. We supply Miflex hoses and they ARE NOT constructed with an inner lining of Polyester-TPU. That material can undergo changes, called hydrolysis, which cause the rapid failure of the hose especially in hot and humid conditions.
Miflex branded hoses are constructed with an inner lining of Polyether-TPU. Some other braided flex hoses are constructed with an inner lining of High Syntactic Polyvinyl Chloride. Regardless, neither Polyether-TPU or HS-PVC is Polyester-TPU. In our long 10 year history with all the double braided Miflex hoses we've sold, we've never seen anything we think could be the hydrolysis problem described in the DAN Alert Diver article.
Miflex hoses are the real deal and we believe safer with longer life than rubber hoses. They are manufactured in Italy with more than thirty individual performance and safety automated tests. All Miflex hoses are designed to meet CE EN250 standards and are Nitrox Ready. But make sure you buy high quality, Miflex hoses, not cheap brand flexible braided hoses made from inferior materials.
DAN does not promote or demote specific manufacturers' products. Our intention is to point out the fundamental reasons for failure and then to advise the diver as to what measures to take to remain safe.
Miflex themselves state that a 5-year or 500 dive count is what the diver should understand as the life span of the hose; of course assuming that there is no abrasion or other mechanical damage. This is their recommendation.
Miflex do indeed use poly-ether PU: this we determined when we found early onset degradation in hoses containing a poly-ester PU liner. They confirmed this although they also informed us that up to 2008, they had some doubts about the quality of the liner materials they used. After this date, they enhanced their quality control to make sure that the material used was indeed the poly-ether version.
Lastly, Miflex cooperated fully with our investigation and in fact both approved of the articles as well as being grateful for our publishing them.