Bubble, Bubble toil and trouble...

DAN often gets questions about bubbles after diving, such as: 
  • Are bubbles always a sign of decompression illness?
  • Where do bubbles form?
  • When do bubbles cause problems?
These are all excellent questions! In fact they have kept decompression researchers preoccupied for more than 100 years! Many aspects of bubbles are not fully answered yet, but here is some of what we know at the moment:

Are bubbles always a sign of decompression illness?
All but the shortest and shallowest compressed gas dives will produce some level of bubbling. So most recreational dives do produce some bubbles. These bubbles typically appear within 2 hours of surfacing and they may be detectable in large venous blood vessels or over the chambers of the heart as they are circulated to the lungs (i.e., the right atrium and right ventricle). This is also why divers are advised not to exercise shortly after diving and to avoid lifting heavy equipment and exerting themselves in the time that bubbles are still buzzing around the body. This does not mean these dives or the associated bubbles produce decompression illness, though. Most bubbles are completely asymptomatic; they are not harmful, as far as we know, even after studying decompression for more than a century. So the question is not whether bubbles are a sign of decompression illness (DCI), but rather, when bubbles produce DCI?

Where do bubbles form?
Bubbles may potentially form in any body tissue or organ if the dissolved inert gas tension exceeds the ambient pressure by a critical amount. This amount seems to vary between tissues based on several factors, including the properties of the tissue itself (e.g., fat or water soluble); the duration of the exposure (i.e., bottom time & inert gas) the amount of circulation the tissue receives (fast or slow tissues); and some tissue-specific motion and pressure dynamics. As an example of tissue-pressure dynamics, consider the difference between arteries an veins: Both arteries and veins contain blood, but arterial blood is pressurised (blood pressure) to a greater extent than veins are. So, irrespective of any circulating inert gas tensions, decompression-related bubbles would appear far more readily in veins than in arteries. Another example has to do with tissues: Organs, like the spinal cord, can stretch as we move and bend; this can predispose it to the formation of bubbles.
Somewhat surprisingly, bubbles that appear in the venous circulation do not actually seem to form within the venous blood itself: They are thought to seep in from adjacent tissues, from where they then enter the venous blood stream and travel towards the lungs. Most recorded bubbles are found in the venous system. However, these are usually not related to DCI symptoms, whereas invisible tissue- and arterial bubbles may be.

When do bubbles cause problems?
Under normal conditions, most of these bubbles are filtered out by the lungs without any difficulty. If the number of bubbles is excessively large, or if showers of bubbles continue over an extended time, the circulation of the lungs can become blocked. Alternatively, gas pockets may eventually form within the heart and interfere with circulation; this is actually quite rare unless there are gross violations of bottom time or ascent rates. The greater concern is that venous bubbles may bypass the lung filtration system (due to heart and lung abnormalities) and then move directly into the arterial circulation and be distributed to the body. As the function of organs like the brain and heart are very sensitive to blood and oxygen supply, they would be easily affected by a bubble-related interruption of circulation. Therefore arterial bubbles entering the circulation may produce symptoms resembling a stroke or heart attack (gas embolism). So arterial bubbles are more of a concern than venous bubbles are. Similarly, within tissues, bubbles may cause distortion of tissue structures or even cause bleeding. For instance, within the spinal cord itself, bubbles may produce compression of, or bleeding within, the cord called spinal decompression illness.

Fortunately, when all is said and done, diving is actually quite a safe sport! One to four out of every 10,000 dives performed within typical scuba diving parameters may produce decompression illness. However, even then, this is usually relatively mild, and responds well to recompression in most cases. What is more important is that divers lower their individual risk by:
  • following the guidelines promulgated by their training agencies;
  • not pushing the limits
  • not over-estimating their abilities; and
  • not ignoring abnormal symptoms after a dive, but start oxygen first aid and call for advice!
When in doubt, remember to call DAN.
Posted in

No Comments


After anaesthesia Air Quality Air exchange centre Air hose failure Altitude changes Altitude sickness Ama divers Anaerobic Metabolism Annual renewal Apnea Apnoea Arterial gas embolism Arthroscopic surgery Aurel hygiene BCD Badages Bag valve mask Bandaids Barbell back squat Bench press Blood flow Bouyancy compensators Boyle's Law Boyle\'s Law Bradycardia Brain Breast Cancer Breath Hold Diving Breath hold Breath-hold Breathing Gas Breathing Bruising Buoyancy Burnshield CGASA CMAS CO2 Cabin pressure Camera settings Cancer Remission Cancer treatments Cancer Cannabis and diving Cannabis Cape Town Dive Festival Carbon dioxide Cardio health Cardiomyopathy Chamber Safety Charles' Law Charles\' Law Charles\\\' Law Charles\\\\\\\' Law Charles\\\\\\\\\\\\\\\' Law Chemotherapy Cleaning products Coastalexcursion Cold Water Cold care Cold Compressed gas Conservation Contaminants Contaminated air Corals Courtactions Crohns disease Crystal build up Crystallizing hoses Cutaneous decompression DAN Courses DAN Profile DAN Researchers DAN medics DAN report DCI DCS Decompressions sickness DCS DM training DReams Dalton's Law Dalton\'s Law Dalton\\\'s Law Dalton\\\\\\\'s Law Dalton\\\\\\\\\\\\\\\'s Law Deco dives Decompression Illness Decompression Sickness Decompression illsnes Decompression treatment Decompression Diaphragms Diseases Dive Chamber Dive Industry Dive Instruction Dive Instructor Dive Pros Dive Research Dive Training Dive accidents Dive buddies Dive computers Dive gear Dive health Dive medicines Dive medicine Dive safety Dive staff Diveleader training Diveleaders Diver Profile Divers Alert Diving Kids Diving career Diving emergencies Diving guidelines Diving injuries Diving suspended Diving Domestic Donation Dr Rob Schneider Drysuit diving Drysuit valves Drysuits EAPs EAP Ear pressure Ear wax Ears injuries Education Emergency action planning Emergency decompression Emergency plans Emergency underwater Oxygen Recompression Emergency Enviromental Protection Environmental factors Environmental impact Environmental managment Equipment care Evacuation Exercise Extended divetime Extinguisher Extreme treatments Eye injuries FAQ Failures Fatigue Faulty equipment Fire Coral Fire Safety Firefighting First Aid Equipment First Aid Training First Aid kits Fish Fitness Flying Francois Burman Free diving Free flow Freedive Training Freediver Freediving performance Gas Density Gas laws Gas mixes GasPerformance Gases Gastric bypass Gear Servicing Gordon Hiles HELP HIRA Haemorhoid treatment Hazard Description Hazardous Marine life Health practitioner Heart Health Heart Helium High temperatures Hot Humans Hydrate Hydrogen Hydroids Hydrostatic pressure Hyperbaric Chamber Hyperbaric research Hypothermia Immine systems In Water Recompression Indemnity form Indian Ocean Inert gas Infections Instinct Instructors Insurance Integrated Physiology International travel International Irritation Kidneys Kids scubadiver Labour laws Legal advice Legislation Leukemis Liability Risks Liability releases Liability Life expectancy Lifestyle Low blood pressure Low pressure deterioration Low volume masks Lung function Lung injuries Lung MOD Maintenance Mammalian Dive Response Mammalian effect Master scuba diver Maximum operating depth Medical Q Medical questionaire Medical statement Middle ear pressure Mike Bartick Military front press Mixed Gas Mono Fins Mooring lines More pressure Muscle pain Mycobacterium marinum Nautilus Nitrogen build up Nitrox No-decompression Non-rebreather Mask Normal Air Nosebleeds O2 providers O2 servicing OOxygen maintenance Ocean pollution Orbital implants Oronasal mask Oxygen Cylinder Oxygen Units Oxygen deficit Oxygen deicit Oxygen ears Oxygen equipment Oxygen masks Oxygen supply Oxygen therapy Oxygen P J Prinsloo PFI PJP Tech Part 3 Photography Pistons Planning Plastic Pneumothorax Pollution Pool Diving Preparation Prepared diver Press Release Professional rights Provider course Pulmanologist Pulmonary Bleb Purge RAID South Africa RCAP Radio communications Rashes Recompression chamber Recompression Recycle Regulator failure Regulators Regulator Remote areas Renewable Report incidents Rescue training Resume diving Risk Assessments Risk assesments Risk elements Risk management SABS 019 Safety Stop Safety Saturation Diving Save our seas Science Scuba Air Quality Scuba Injury Scuba children Scuba dive Scuba health Scubalearners Sealife Skin Bends Skin outbreak Skin rash Snorkeling Snorkels Sodwana Bay Splits Squeezes Standars Supplemental oxygen Surgeries Surgery Tattoes Technical Diving The Bends The truth Thermal Notions Tides Tips and trick Transplants Travel tips Travel Tweezers Unconsciousness Underwater photographer Underwater pho Vaccines Vagus nerve Valsalva manoeuvers Vape Vaping Vasvagal Syncope Venting Volatile fuels Washout treatments Wastewater Water Weakness Wetsuit fitting White balance Winter Woman in diving Work of Breathing Wound dressings Wreck dive Wreckdiving Youth diver abrasion air-cushioned alert diver altitude anemia antibiotics antiseptics bandages bent-over barbell rows body art breathing air calories burn cardiovascular checklist chemo port child clearances closed circuit scuba currents cuts dead lift decompression algorithms decongestants dehydration dive injuries dive medicing dive ready child dive reflex dive tribe diver rescue diver training dive diving attraction doctors domestic travel dri-suits dry mucous membranes dry suits dry e-cigarettes ear spaces elearning electrolyte imbalance electroytes emergency action plans emergency assessment equalizing exposure injuries eyes fEMAL DIVERS fire rescue flexible tubing frediving gas bubble health hospital humidity immersion pulmonary edema (IPE join DAN knee longevity lower stress marine pathogens medical issues medical procedures medical risk assesment mental challenge minor illness mucous membranes nasal steroids nasal nematocysts newdivers nitrogen bubbles off-gassed operating theatre operations orthopeadic outgas pain perforation phillippines physical challenges pinched nerves plasters polyester-TPU polyether-TPU post dive preserve prevention rebreather mask rebreathers retinal detachment risk areas safety stops saturation scissors scuba equipment scuba single use sinus infections smoking snorkeling. spearfishing stings strength sub-aquatic swimmers ears tattoo care tecnical diver thermal protection training trimix unified standards vision impaired warmers water quality