The Oxygen Window

Sooner or later, all divers who are trained in the use of oxygen first-aid, or learn about recompression on oxygen, will encounter the term "oxygen window". In fact, 'oxygen window' is actually the name of our Newsletter for DAN Oxygen First Aid Instructors.
So, what is the "Oxygen Window"...?
Essentially, the oxygen window may be thought of as the 'missing' gas tension caused by the conversion of oxygen to carbon dioxide (as a result of their different solubilities in blood), which allows more nitrogen (or any other inert gas) to be dissolved in venous blood to take 'in its place' and increases the rate of nitrogen (or inert gas) gas elimination.
If this did not make sense, please read on. We'll try not to be too technical, but some foundational principles do need to be explained:
As we breathe, the inspired gas partial pressures (O2, N2, CO2 and H2O vapor) within the alveolar sacs of the lung are in a dynamic balance with the dissolved gas tensions in the blood flowing through the lung. Basically, as per Dalton's Law: In a gas mixture, the sum of the partial pressures of the constituent gases equals the ambient pressure. Perhaps, more simply stated: the total is equal to the sum of the parts. The same is ultimately true for dissolved gas tensions (i.e., gases in solution) at equilibrium or the point of saturation, but gas tensions always lag behind partial pressures changes by varying degrees. This is because Henry's Law involves certain time-related mechanisms, i.e., diffusion and perfusion. In fact our decompression tables are the mathematical models for this phenomenon. Essentially they attempt to predict these 'lags' in uptake and release of gas tensions, in response to changes in ambient pressure and inspired gas partial pressures, to protect us from getting decompression illness.
Now, here is the mental bridge that needs to be made: Although partial pressure and gas tensions are expressed in the same units of measure - milimeters mercury or kilo pascals typically - they are not identical: Partial pressure is the force a gas exerts per surface area within a gaseous environment, whereas gas tension is the pressure exerted by a gas within a solution. In a gas mixture, a given number of molecules of any gas will exert the same partial pressure (i.e., as a function of Avogadro's Law): so, for example, 20 oxygen gas molecules wil exert the same partial pressure as 20 carbon dioxide gas molecules. Once dissolved in solution, however, Avogadro's Law no longer applies: The gas tension is now determined by the gas' solubility within that given solution. So, for instance, if one gas is more soluble in e.g., water or blood than another gas is, a larger number of moleculeswill enter the solution (i.e., a higher dissolved gas concentration) for the same partial pressure driving it into solution (i.e., Henry's Law). Put differently: If both gases are driven into solution by the same partial pressure, more actual gas molecules of the soluble gas will dissolve before it reaches saturation. Therefore, unlike the the situation in a gas mixture, where oxygen and carbon dioxide exert the same partial pressure for the same number of molecules, in water or blood the gas tension of 1 oxygen molecule would be the equivalent of 20 carbon dioxide molecules (i.e., carbon dioxide is twenty times more soluble in water than oxygen).
Now for the oxygen window: In the body, oxygen is metabolised into carbon dioxide. But, because carbon dioxide is 20 times more soluble, as oxygen is converted to carbon dioxide, the large drop in oxygen gas tension is mirrored by only a very minor (theoretically 1/20th) increase in carbon dioxide gas tension. This is due to the relative solubility difference between the gases. In truth, it is slightly more complicated than this under normal physiological conditions due to the carrier and buffering effects of hemoglobin: In other words, when we breathe air, much of the oxygen our bodies use is supplied from hemoglobin rather than from the dissolved oxygen portion. However, when we increase the body's gas tensions of oxygen, by breathing 100% oxygen, and even more so when we breath it under hyperbaric conditions (e.g., during recompression at 2.8 atmospheres), more of the body's demands for oxygen can be met by a reduction in the amount of dissolved oxygen. Under these conditions, there is a stark contrast between the plummeting oxygen gas tension (as the blood moves through tissues from arteries to veins), with only a minor carbon dioxide gas tension rise being evident.
So, what is the oxygen window? Essentially, it is the 'missing' gas tension created by the conversion of oxygen to carbon dioxide (as a result of their different solubility in blood); this allows more nitrogen (or inert gas) to be dissolved in venous blood to take 'in its place' and increases the rate of nitrogen (or inert gas) gas elimination.
Read more on wikipedia.
So, what is the "Oxygen Window"...?
Essentially, the oxygen window may be thought of as the 'missing' gas tension caused by the conversion of oxygen to carbon dioxide (as a result of their different solubilities in blood), which allows more nitrogen (or any other inert gas) to be dissolved in venous blood to take 'in its place' and increases the rate of nitrogen (or inert gas) gas elimination.
If this did not make sense, please read on. We'll try not to be too technical, but some foundational principles do need to be explained:
As we breathe, the inspired gas partial pressures (O2, N2, CO2 and H2O vapor) within the alveolar sacs of the lung are in a dynamic balance with the dissolved gas tensions in the blood flowing through the lung. Basically, as per Dalton's Law: In a gas mixture, the sum of the partial pressures of the constituent gases equals the ambient pressure. Perhaps, more simply stated: the total is equal to the sum of the parts. The same is ultimately true for dissolved gas tensions (i.e., gases in solution) at equilibrium or the point of saturation, but gas tensions always lag behind partial pressures changes by varying degrees. This is because Henry's Law involves certain time-related mechanisms, i.e., diffusion and perfusion. In fact our decompression tables are the mathematical models for this phenomenon. Essentially they attempt to predict these 'lags' in uptake and release of gas tensions, in response to changes in ambient pressure and inspired gas partial pressures, to protect us from getting decompression illness.
Now, here is the mental bridge that needs to be made: Although partial pressure and gas tensions are expressed in the same units of measure - milimeters mercury or kilo pascals typically - they are not identical: Partial pressure is the force a gas exerts per surface area within a gaseous environment, whereas gas tension is the pressure exerted by a gas within a solution. In a gas mixture, a given number of molecules of any gas will exert the same partial pressure (i.e., as a function of Avogadro's Law): so, for example, 20 oxygen gas molecules wil exert the same partial pressure as 20 carbon dioxide gas molecules. Once dissolved in solution, however, Avogadro's Law no longer applies: The gas tension is now determined by the gas' solubility within that given solution. So, for instance, if one gas is more soluble in e.g., water or blood than another gas is, a larger number of moleculeswill enter the solution (i.e., a higher dissolved gas concentration) for the same partial pressure driving it into solution (i.e., Henry's Law). Put differently: If both gases are driven into solution by the same partial pressure, more actual gas molecules of the soluble gas will dissolve before it reaches saturation. Therefore, unlike the the situation in a gas mixture, where oxygen and carbon dioxide exert the same partial pressure for the same number of molecules, in water or blood the gas tension of 1 oxygen molecule would be the equivalent of 20 carbon dioxide molecules (i.e., carbon dioxide is twenty times more soluble in water than oxygen).
Now for the oxygen window: In the body, oxygen is metabolised into carbon dioxide. But, because carbon dioxide is 20 times more soluble, as oxygen is converted to carbon dioxide, the large drop in oxygen gas tension is mirrored by only a very minor (theoretically 1/20th) increase in carbon dioxide gas tension. This is due to the relative solubility difference between the gases. In truth, it is slightly more complicated than this under normal physiological conditions due to the carrier and buffering effects of hemoglobin: In other words, when we breathe air, much of the oxygen our bodies use is supplied from hemoglobin rather than from the dissolved oxygen portion. However, when we increase the body's gas tensions of oxygen, by breathing 100% oxygen, and even more so when we breath it under hyperbaric conditions (e.g., during recompression at 2.8 atmospheres), more of the body's demands for oxygen can be met by a reduction in the amount of dissolved oxygen. Under these conditions, there is a stark contrast between the plummeting oxygen gas tension (as the blood moves through tissues from arteries to veins), with only a minor carbon dioxide gas tension rise being evident.
So, what is the oxygen window? Essentially, it is the 'missing' gas tension created by the conversion of oxygen to carbon dioxide (as a result of their different solubility in blood); this allows more nitrogen (or inert gas) to be dissolved in venous blood to take 'in its place' and increases the rate of nitrogen (or inert gas) gas elimination.
Read more on wikipedia.
Posted in Dive Safety FAQ
Tagged with Breathing, Lung function, Oxygen, Oxygen deficit, Air exchange centre, Lung, Lung injuries
Tagged with Breathing, Lung function, Oxygen, Oxygen deficit, Air exchange centre, Lung, Lung injuries
Categories
2020
January
February
Group Fitness at the PoolHow to Rescue a Distressed diver at the SurfaceHow to manage Near-DrowningNo Sit-ups no problem How to manage MalariaHow to manage Oxygen Deficiency (Hypoxia)What to do when confronted by a sharkHow to manage Scombroid PoisoningHow to perform a Deep Diver RescueHow to perform One-rescuer CPRHow to perform a Neurological Assessment
March
DAN’s Quick Guide to Properly Disinfecting Dive GearCOVID-19 : Prevention Recommendations for our Diving CommunityGermophobia? - Just give it a reasonable thoughtScuba Equipment care – Rinsing and cleaning diving equipmentCOVID-19 and DAN MembershipFurther limitations imposed on travels and considerations on diving activitiesDAN Membership COVID-19 FAQsLancet COVID-19 South African Testing SitesCOVID-19 No Panic Help GuideGetting Decompression Sickness while FreedivingDown in the DumpsCardiovascular Disease and DivingDelayed Off-GassingDiving after Dental surgeryDiving with Multiple MedicationsPygmy Seahorses: Life AquaticAfrica DustCOVID-19 Myth BustersScuba Units Are Not Suitable Substitutes for VentilatorsDisinfection of Scuba Equipment and COVID-19Physioball Stability Exercises
April
COVID-19 AdvisoryScuba Equipment Care - Drying & Storing Your GearTransporting Diving Lights & BatteriesHow to Pivot Your Message During a CrisisTourism Relief FundCOVID-19 Business Support ReviewDiving After COVID-19: What We Know TodayEUBS-ECHM Position Statement on Diving ActivitiesPart 2: COVID-19 Business Support ReviewPress Release
May
Diving in the Era of COVID-19Dive Operations and COVID-19: Prepping for ReturnCOVID-19 & Diving Activities: 10 Safety RecommendationsCOVID-19: Surface Survival TimesThe Philippines at its FinestThe Logistics of ExplorationThe Art of the Underwater SelfieShooter: Douglas SeifertFAQs Answered: Disinfecting Scuba EquipmentStock your First-Aid KitResearch and OutreachCovid-19 ResearchOut of the BlueEffects of Aspirin on DivingThe New Pointy end of DivingDiving and Hepatitis CCaissons, Compressed-Air work and Deep TunnellingPreparing to Dive in the New NormalNew Health Declaration Form Sample Addressing C-19 IssuesDiving After COVID 19: What Divers Need to Know
June
Travel Smarter: PRE-TRIP VACCINATIONSAttention-Deficit/Hyperactivity Disorder and DivingCOVID-19: Updated First Aid Training Recommendations From DANDiving with a Purpose in National Marine SanctuariesStay Positive Through the PandemicFor the Dive Operator: How to Protect Your Staff & ClientsStudying Deep reefs and Deep diversAsking the Right QuestionsLung squeeze under cold diving conditions
July
Dive DeprivationVolunteer Fish Surveys: Engage DiversDAN Member Profile: Mehgan Heaney-GrierTravel Smarter: Don’t Cancel, Reschedule InsteadDive Boat Fire SafetyRay of HopePartner ExercisesDiving at AltitudeAluminium ExposureHip FracturesAcoustic NeuromaGuidelines for Lifelong Medical Fitness to DiveNew Dive Medical Forms
August
Women in Diving: Lauren Arthur, Conservationist & Natural History Story TellerWomen in Diving: Dr Sara Andreotti White Shark ResearcherTiming ExerciseWomen in Diving: The Salty Wanderer, Charlie WarlandWomen in Diving: Beth Neale, Aqua soul of freedivingWomen in Diving: Diving and spearfishing Diva, Jean HattinghWomen in Diving: Zandile Ndhlovu, The Black Mermaid
September
October
Freediving For ScienceStep Exercises with CardioFluorescence Imaging help Identify Coral BleachingChildren and DivingThe Watchman device and divingScuba Diving and Factor V Leiden gene mutationNitrogen Narcosis at shallow depthsOil and Particulates: Safe levels in Breathing Air at depthDive Principles for Coping with COVID-19The Importance of a Predive Safety CheckTalya Davidoff: the 'Plattelandse Meisie' Freediver
2019
February
April
May
DAN Press ReleaseYour Dive Computer: Tips and tricks - PART 1Your Dive Computer: Tips and tricks - PART 2Aural HygieneDCS AheadHow Divers Can Help with coral conservationRed Tide and shellfish poisoningDiving after Kidney DonationDiving with hypertrophic cardiomyopathyEmergency Underwater Oxygen Recompression
June
July
September
October
November
Exercise drills with DowelsHeart-rate TrainingCultivating ConservationTRavel Smarter : Evaluating an unfamiliar Dive operatorChallenging the Frontiers of Decompression ResearchTravel Smarter: Plan for Medical EmergenciesWhen should I call my Doctor?DAN Student Medical Expense CoverageAdvice, Support and a LifelineWetsuits and heat stressDiving after Chiropractic adjustments
2018
April
Flying after pool diving FAQLung squeeze while freediving FAQDiving after Bariatric surgery FAQMarine injuries FAQVasovagal Syncope unpredictable FAQIncident report procedure FAQDiving after knee surgery FAQDiving when in RemissionDive with orbital Implant FAQInert gas washout FAQOxygen ears FAQPost Decompression sicknessChildren and diving. The real concerns.Diving after SurgeryPhysiology of Decompresssion sickness FAQDiving and regular exerciseGordon Hiles - I am an Underwater Cameraman and Film MakerScuba Air QualityBreath-hold diving. Part 3: The Science Bit!Compensation Legislation and the Recreational DiverCape Town DivingFive pro tips for capturing better images in cold waterThe Boat Left Without You: Now What?
May
When things go wrongEmergency Planning: Why Do We Need It?Breath-hold diving: Running on reserve -Part 5 Learning to RebreatheSweet Dreams: When Can I Resume Diving Post Anaesthesia?Investing in the future of reefsTo lie or not to lie?THE STORY OF A RASH AFTER A DIVEFirst Aid KitsTaravana: Fact or Falacy?
June
Oxygen Unit MaintenanceKnow Your Oxygen-Delivery Masks 1Know Your Oxygen-Delivery Masks 2Emergency Oxygen unitsInjuries due to exposure - HypothermiaInjuries due to exposure - Altitude sicknessInjuries due to Exposure - Dehydration and other concernsHow to plan for your dive tripThe Future of Dive MedicinePlastic is Killing our ocean
September
Return to DivingDiagnoses: Pulmonary blebSide effects of Rectogesic ointmentDiving with ChemotherapyReplacing dive computers and BCDsCustomize Your First-Aid KitPlan for medical emergenciesHow the dive Reflex protects the brain and heartDry suits and skin BendsAltitude sickness and DCSScuba Diving and Life Expectancy
2017
March
April
Incident Insight: TriageA Field Guide to Minor MishapsSnorkels: Pros & ConsTime & RecoveryMedication & Drug UseDiving with CancerNitrox FAQCOPD FAQHyperbaric Chamber FAQJet Lag FAQHydration FAQAnticoagulant Medication FAQFluid in the Ear FAQEye Surgery FAQElderly Divers FAQNitrogen FAQHealth Concerns FAQMotion Sickness FAQMicronuclei FAQ
June
August
2016
February
March
Breath-Hold Diving & ScubaReturn to Diving After DCITiming Exercise & DivingHot Tubs After DivingSubcutaneous EmphysemaIn-Water RecompressionDiving at AltitudeFlying After DivingDiving After FlyingThe Risks of Diabetes & DivingFlu-like Symptoms Following a DiveHand & Foot EdemaFrontal HeadachesBladder DiscomfortLatex AllergiesRemember to BreatheProper Position for Emergency CareAches & PainsCell Phones While DrivingSurfers Ear Ear Ventilation TubesDealing with Ear ProblemsDiving with Existing Ear InjuriesPerforated Ear DrumENT SurgeryUnpluggedCochlear ImplantsPortuguese Man-of-WarJellyfish StingsLionfish, Scorpionfish & Stonefish EnvenomationsStingray Envenomation Coral Cuts, Scrapes and RashesSpeeding & Driving Behaviour
June
Newsflash! Low Pressure Hose DeteriorationItching & rash go away & come back!7 Things we did not know about the oceanMigraine HeadacheAttention Deficit Disorder Cerebral Vascular AccidentEpilepsyCerebral PalsyHistory of SeizuresMultiple Sclerosis Head TraumaBreast Cancer & Fitness to Dive IssuesLocal Allergic ReactionsSea LiceHow ocean pollution affects humans Dive Fatality & Lobster Mini-Season StatisticsPregnancy & DivingReturn to Diving After Giving BirthBreast Implants & DivingMenstruation During Diving ActivitiesOral Birth ControlBreast FeedingPremenstrual SyndromeOsteoporosisThe Aftermath of Diving IncidentsCompensation Legislation & the Recreational DiverNoise-Induced Hearing LossLegal MattersThe Nature of Liability & DivingDAN Legal NetworkWaivers, Children & Solo DivingHealthy, but overweight!Taking Medication while Scuba DivingGetting Fit for the Dive SeasonBone Considerations in Young DiversAsthma and Scuba DivingHepatitisDiving with HyperglycemiaShoulder PainDiving After Spinal Back Surgery
August
Hazard Identification & Risk AssessmentCaring For Your People Caring For Your FacilitiesCaring For Your BusinessScuba Air Quality Part 1Scuba Air Quality Part 2Chamber Maintenance Part 1Chamber Maintenance Part 2The Aging Diver Propeller SafetyRelease The PressureDon't Get LostMore Water, Less Bubbles13 Ways to Run Out of Air & How Not To7 Mistakes Divers Make & How To Avoid ThemSafety Is In The AirHow Good Is Your Emergency Plan
2015
January
March
No Comments